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Abstract: In this paper, the concept of dual models of a propositional linear temporal logic formulais defined: A
formula f has dual models if it has two models (namely two w-sequences of states) such that the assignments to
atomic propositions at each position of them are dual. Then for various propositional linear temporal logics, the
complexity of the problem deciding whether a formula f has dual models (denoted by DM) and the problem of
determination of dual models in a Kripke-structure for a formula f (denoted by KDM) are investigated. It is shown
that DM and KDM are NP-complete for the logic with F (“Future”) operator, and they are PSPACE-complete for
the logic with F, X (“Next") operators, the logic with U (“Until”) operator, the logic with U, S, X operators, and the
logic with regular operators given by Wolper (known as extended temporal logic, ETL).
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1 Introduction

Linear temporal logic was introduced in Ref.[1] as an appropriate formal system for reasoning about parallel
programs and reactive systems. Linear temporal logic can be used to describe temporal properties of systems
conveniently and briefly, such as the properties of deadlock free, liveness etc.

The complexity of satisfiability (SAT) and model checking (MC) problems of propositional linear temporal
logics has been investigated extensively in Ref.[2—6] motivated by their applications to the synthesis of concurrent
systems from specifications”® and the verification of concurrent and reactive systems®®. While all these
investigations are from a practical view, we, from a theoretical view, are wondering whether there are other natural
decision problems for propositional linear temporal logics. With the theoretical view in mind, we examine various
variants of SAT problem of Boolean logic (such as NAESAT, MAXSAT, MAJSAT, UNIQUESAT etc™) to see
whether they can be generalized into propositional linear temporal logics. Finally we find out that among them,
NAESAT can be generalized naturally and easily into propositional linear temporal logics, namely dual models
problem (DM) defined in this paper.

NAESAT is to decide whether a boolean formula in 3-CNF is not-all-equal satisfiable: A boolean formulafin
3-CNF (conjunctive normal form such that each clause has exactly three literals) is not-all-equal satisfiable
(NAESAT) if there is an assignment to atomic propositions such that each clause has at least one true literal and at
least one false literal. The complexity of NAESAT is the same as SAT for boolean logic, namely NP-complete.

It is easily shown that a 3-CNF boolean formula f is not-all-equal satisfiable iff f has two models whose
assignments to atomic propositions are dual. Then naturally, we can generalize this concept of duality of
assignments to atomic propositions to propositional linear temporal logics and define so called dual models
problem.

Dual models of a propositional linear temporal logic formula f are two models (namely two w-sequences of
states) of f such that the assignments to atomic propositions at each position of them are dual. Dual models problem
(DM), as a variant of SAT for propositional linear temporal logic, is to decide whether a given formula f has dual
models. Moreover, in view of model checking problem, we consider a similar problem, namely the problem of
determination of dual models in a Kripke structure (KDM) defined as follows: KDM problem is to decide for a
given formula f, a Kripke structure K and two states 6;, &, in K, whether there are two dual paths p, q starting from
81, & respectively such that they both satisfy f.

In Ref.[2], the complexity of SAT and MC was investigated for various propositional linear temporal logics. It
was shown that SAT and MC are NP-complete for the logic with F (“Future”) operator, and are PSPACE-complete
for the logic with F, X (“Next”) operators, the logic with U (“Until”) operator, the logic with U, S, X operators, and
the logic with regular operators given by Wolper (known as Extended Temporal Logic, ETL). On the basis of those
results for SAT and MC in Ref.[2], we investigate the complexity of DM and KDM in this paper and show that the
complexity of DM and KDM is the same as that of SAT and MC for various propositional linear temporal logics.
Moreover, our techniques used in this paper are general enough to determine the complexity of DM and KDM
problems for all propositional linear temporal logics that admit complete Boolean operators. Consequently once we
have determined the complexity of SAT and MC problems for a propositional linear temporal logic, we know the
complexity of DM and KDM problems as well.

This paper is organized as follows. Section 2 defines the syntax and semantics of propositional linear temporal
logic, and the related decision problems. In Section 3, we study some properties of the dual models. In Section 4,
we investigate the complexity of DM and KDM problems. Finally in Section 5, we give some conclusions and
remarks.
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2 Notation and Definitions

In this paper, we follow the notation and definitions of Ref.[2].
2.1 Syntax and semantics of propositional linear temporal logics

A regular right linear grammar is a regular grammar in which all the production rules are of the form N—aM,
N—a, where N, M are nonterminals in the grammar and a is a string of terminal symbols.

Given a set of atomic propositions P, and a regular right linear grammar G with terminal symbols ay,...,a, and
nonterminal symbols Ng,...,Ny, the syntax of extended temporal logic (denoted by ETL(G)) is defined as follows:

f:=P|fy[fov o Xy [f UF| f1SFoNj(fy, ... fr), where PeP, 1<j<m.

In addition, the following abbreviations are defined:

finfo=—(=fiv—fy), fiof=—fvf,, Fi=TrueUf, Gf=—F—f.

Let Oy,...,0ce{X,F,G,U,S}, then L(O,...,0Ok) denotes the sublogic of ETL(G) restricted to these operators, for
example L(F), L(F,X), L(U), L(U,X), L(U,SX) and so on. We denote the logic containing F, X operators but
with “—" operators applied only to atomic propositions by I:(F ,X) .

A structure S=(s,£), where s=(s,5y,...), iS an @w-sequence of states in which all the states are distinct and
&{s0,S1,-.-} 2P Intuitively, & specifies which atomic propositions are true in each state. An interpretation is a pair
(S,0) where Sis astructure as previously defined, and §is a state in the sequence s.

Semantics of ETL(G) are defined as follows:

Let S=(s,&) be astructure and s be astatein s, then

(Ss)|FP where PeP, iff Pe &(s);

(Ss)[=—fy iff not (Ss)[=fy;

(Ss)=fuv iff (Ss)I=fy or (Ss)I=f;

(Ss)=XfLiff (S0t

(Ss)|=f1Uf, iff thereisaj>i such that (Ss)[=f, and for all k with i<k<j, (§s)[=f1;

(Ss)[=f.Sf, iff thereis aj<i such that (Ss)|=f, and for all k with j<k<i, (Ss)[=f1;

(Ss)ENj(fa, ... .fn) (I<j<m) iff thereis afinite or infinite string & & &, ... generated by G from N; such that, for
al k=0, (S;s, )=, -

Example: Consider the grammar N;—a;a,N;. Let f1=P, f,=True, then (Ss)|=Ny(f1,f,) iff the proposition P holds
at all i+2k (k=0) positions of Ssince the only string that N; can generate is a;a,a;a,..., f; must be satisfied by Sat all
positions starting from s where a; occurs, namely all the positions of i+2k (k>0).

In the remainder of this paper, we always let G denote a regular right linear grammar with terminal symbols
ay,...,a8, and nonterminal symbols Ny,...,N,.

2.2 Problems of propositional linear temporal logics
Satisfiability problem for linear temporal logic (SAT)

Given a formula feL, where L is a sublogic of ETL(G), decide whether there is a structure S=(s,¢£) such that
(Sso)[=f.

Kripke Sructure

A Kripke-structure K is a triple (N,R,7), where N is a finite set of states (also called nodes), RcNxN, and
7:N—2P. A path p in K is an infinite sequence (po,p1,...) where Vi>0,p,eN, and (p;,pi+1) €R. For a path p in aKripke
structure K, we let S, denote the structure (s,&) where Vi>0, &(s)=7(p)).
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Model checking Problem (MC)

Given a Kripke-structure K=(N,R,7), a state 5eN, and a formulafeL, where L is a sublogic of ETL(G), decide
whether thereisapath pin K starting from & such that (Sp,s§)|=f .

Remark: The existential definition of Model checking problem here is the dual of the usual universal definition
of model checking in verification. All the complexity results can be translated between the two formulations via
duality.

Dual formulas

Let feL, where L is asublogic of ETL(G), the dual formula f of f is defined by the following rules:

P=—P, -P=P;

?fl = —.Tl if f, isn’t an atomic proposition;

Xt = X1, ;

m =T10pf_2 , where Op=v, U, Srespectively;

Ny (Frn £) = NG (F, Ty (A<,

Itiseasly seenthat f=f.

Dual structures

Two structures S=(s,&) and T=(t, ) are called dual structuresif for all i>0,

&(s)nA(t)=D and f(s)(t)=P.

The dual structure of S=(s,&) isdenoted by S=(5,&) .

Dual models

Given aformulafel, where L is a sublogic of ETL(G), structures S=(s,¢) and T=(t,7) are called dual models of
fif (Ss)|=f, (T.tg)|=f, and S, T are dual structures.

Example. Let P={P,P,}, f=P,UP,, S=(s,&) be a structure with &(so)={ P2}, &(s)={P4} (i=1), and T=(t,7) be a
structure with z(tg)={ P}, #(t)={ P2} (i=1), then Sand T are dual models of f.

Dual pathsin a Kripke-structure

Given a Kripke-structure K=(N,R, 7), two paths p and q are called dual pathsif S, and §, are dual structures.

Dual models problem (DM)

Given aformulafel, where L is asublogic of ETL(G), decide whether f has dual models.

Determination of dual modelsin a Kripke-structure problem (KDM)

Given a Kripke-structure K=(N,R, 7), two states 5,6 € N, and a formulafeL, where L is a sublogic of ETL(G),
decide whether there are dual paths p, g in K starting from &, & respectively such that (S,,s))=f and

(Sq,s§)|: f.

Not-all-equal Satisfiability Problem for boolean formulal* (NAESAT)

Given aboolean formula g=CiACon...ACrin 3-CNF where C =1, vI, vI, (1<ism), |, =X; or —x (1<k<3)
for some j such that 1<j<n, x,,...,X, are the variables appearing in g, decide whether there exists an assignment
7:{Xy,..., X} >{true,false} such that under this assignment three literals of each clause are neither all true nor all
false.

It is evident that there exists an assignment 7:{x,...,xn} >{true,false} such that under this assignment three
literals of each clause of g are neither al true nor al false iff there are two dual assignments  and 77 (namely
17(x)=true< n(x)="fase for all 1<i<n) such that g istrue both under 7 and under 7 .
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3 Propertiesof Dual Models

Theorem 3.1. Let feETL(G), S=(s,&) be a structure, then (Ss)I=f iff (S,5)|=f , whereS s the dual structure
of S and f isthe dual formulaof f.

Proof: We prove the theorem by structural induction on f.

f=P or f=—P: the two cases are trivial.

f=—f; where f; isn’t an atomic proposition:

(Ss)I=fiff not (Ss)I=fy iff
not (S,5)=f, (by induction hypothesis) iff
(S5, iff (S5)=f iff (S5)=f
f=fyvfy:
(Ss)IFfiff ((Ss)I=fy or (Ss)I=F) iff
(S.5)=f, or (S5)f, (byinduction hypothesis) iff
S3)fv T, iff (S5)=fv i, iff (S5)=f.
f=Xf1: (Ss)|=f iff (Ss41)|=fy iff (§,§+1)|=?1 (by induction hypothesis) iff
(S.5)=X 1, iff (S,5)=XT, iff (S5)=F.
f=f,Uf,: (Ss)I=f iff ((Ss)I=f, for somej=i, and for all k: i<k<j, (Ssg)|=f,) iff
((S;5)=f, forsomeji, and for all k: i<k<j, (S,5)]=f, ) (by induction hypothesis) iff
(S3)fU f, iff (55)=f
f=f,Sf,: similar to the case of f=f,Uf,.
f=Nj(fy,....fn) (1<j<m): (Ss)|=f iff
(there exists a finite or infinite string - D= VAR DA generated by G from N; such that, for all >0,
(S5 )=ty ) iff
(there exists a finite or infinite string &, &, ,a,.... generated by G from N; such that, for al 1>0,
(S.5.)f=f, ) (by induction hypothesis)) iff
(S.83)EN; (f,,.... f,) iff (S,5)=F . O

Corollary 3.2. Let feL, where L isasublogic of ETL(G), then f is satisfiable iff f v f has dual models.

Proof:

“Only if" part: Suppose that f is satisfiable.

There exists a structure S=(s,¢) such that (Ssp)|=f, then according to Theorem 3.1, (§,§0)|:f . Obviously, S
and S aredua modelsof fv f .

“If* part: Suppose that fv f has dual models, then there are dual structures S=(s,&) and S=(5,&) such
that (S,s,)=fv f and (S,§)=fvf.Then ((Ss)lfor (S,s)=f) and ((5,%)=f or (S5)=T). If (Sso)l=F
or (S5,%)=f , then we are done. Otherwise, we have (S,s)=f and (S,5)|=f , then according to Theorem 3.1,
(S.5)f and (Sso)l=f, fis satisfiable. O

Corollary 3.3. Let feL, where L isasublogic of ETL(G), then f has dual modelsiff f A f issatisfiable.

Proof:

“Only if" part: Suppose that f has dual models, then there exist dual structures S=(s,&) and S=(5,&) such
that (Sso)l=f and (S,§)|=f . According to Theorem 3.1, (S,5,)|=f . Thus (S,5)]=f A f, fAf issatisfiable.
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“If* part: Suppose that f A f is satisfiable, then there exists a structure S=(s,&) such that (S,so)|:f Af,
namely (Sso)l=f and (S,s,)|=f . According to Theorem 3.1, (S,%,)|=f , thusf has dual models. O

4 Complexity of DM and KDM Problems

4.1 Complexity of DM problem

Theorem 4.1. The complexity of DM problem for propositional linear temporal logicsis as follows:

(i) DM is NP-complete for L(F) and L(F,X);

(ii) DM is PSPACE-complete for L(F,X), L(U), L(U,S,X), ETL(G).

Proof: (i) At first we show that DM is NP-hard for L(F) and E(F,X) .

From Ref.[2], we know that SAT problems for L(F) and I:(F,X) are NP-complete. Then if we can reduce
SAT to DM for the two logics, we are dcine. As a matter of fact, accordLng to Corollary 3.2, a formula feL(F)
(feL(F,X) resp)issatisfiableiff fv f (whichisin L(F,X) if feL(F,X)) hasdua models, thuswe have
reduced SAT to DM for L(F) and I:(F ,X) , and the reduction is obviously a polynomial-time reduction.

Now we show that DM isin NP by reducing DM to SAT for L(F) and E(F,X) .

From Corollary 3.3, aformulafeL(F) ( f e L(F,X) resp.) has dua modelsiff f A f (whichisin L(F,X)
if fe E(F,X)) is satisfiable. Then we really have reduced DM to SAT for L(F) and [(F,X) , and it is obvious
that the reduction is a polynomial-time reduction. DM is in NP for L(F) and E(F,X), and thus DM is
NP-complete for L(F) and E(F , X) .

(ii) The proof is similar to (i). In Ref.[2], we have known that SAT is PSPACE-complete for L(F,X), L(U),
L(U,S,X), ETL(G), consequently, DM is PSPAC-complete for L(F,X), L(U), L(U,S,X), ETL(G) as well. O
4.2 Complexity of KDM problem

Theorem 4.2. The complexity of KDM problem for propositional linear temporal logicsis as follows:

(i) KDM is NP-complete for L(F), L(F,X);

(ii) KDM is PSPACE-complete for L(F,X), L(U), L(U,S,X), ETL(G).

Theorem 4.2 is proved by the following two lemmas, namely Lemmas 4.3 and 4.4.

Lemma 4.3. KDM is NP-hard for L(F), I:(F,X) and PSPACE-hard for L(F,X), L(U), L(U,S,X), ETL(G).

Proof: We reduce MC to KDM to show that KDM is NP-hard for L(F), E(F,X) and PSPACE-hard for
L(F,X), L(U), L(U,SX), ETL(G) since we know that MC is NP-complete for L(F), E(F,X) and PSPACE-
complete for L(F,X), L(U), L(U,S,X), ETL(G) in Ref.[2].

Let P be a set of atomic propositions, K=(N,R,7) be a Kripke-structure such that 7(x)cP for all xeN, deN, felL

» with all atomic propositions in P (where L denotes any of L(F), E(F,X) , L(F,X), L(V),
Y L(U,SX), ETL(G)). Now we construct another Kripke-structure K'=(N',R’,7’) and two
R .. @ gaes 5/, 5 in N and a formula f'eL such that there is a path p in K starting from &
d ' such that (Sp,s§)|:f iff there are two dual paths p’ and P’ starting from o;, o,
~ respectively such that (Sp,,sg")|:f’ and (S,—Jusf)|=f’.
X
Let P'=PU{PI}. K'=(N',R,7') is defined as follows (Fig.1):
—Ph () N'=NuU{X]|xe N};
9 ' R=RU{(X.y)|(xy)eR};

7 (Q)=n()API}, 7'(X)=P'=n'(X)=P -n(x).
Fig.1 Andlet 5/=5, 8y=6, f'=(f API)v(fA=PI).
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From the construction, it is not hard to see that there is a path p in Fig.1(a) starting from & such that
(S, s)=f iff thereisadual path P of pinFig.1(b) starting from & suchthat (S;,sp)=f . *)

Now we prove that there is a path p in K starting from 6 such that (Sp,s§)|=f iff there are two dual paths p’
and P’ starting from o], &, respectively suchthat (S,,s{)=f" and (S, .s{)=f".

“Only if” part: Suppose that there is a path p in K starting from & such that (Sp,s§)|:f , then there exists a
path p’ in Fig.1(a) starting from &; (namely o) such that (S,.s})|=f , and consequently, (S,,s{)=fAPI,
(Sp,,sg")|=(f AP v (f A=Pl). According to (*), there is a dual path P’ of p’ in Fig.1(b) starting from &,
(namely &) suchthat (S;,s)|=f , and consequently, (Sy.s5)|=f A=Pl, (Sy.s5)=(f API)v(fA=PI).

“If” part: Suppose that there are dual paths p’ and p' starting from &/, &, respectively such that
(Sy.s))=f" and (Sy.s))=f", then (S,.s5)=f APl and (S;,s)=f A—PI . Thus path p’ is in part Fig.1(a),
consequently, there isa path p in K starting from & such that (Sp,sop)|:f ]

Thus we have reduced MC to KDM in polynomial time and consequently, KDM is NP-hard for L(F), [(F, X)
and is PSPACE-hard for L(F,X), L(U), L(U,S,X), ETL(G). O

Lemma 4.4. KDM isin NPfor L(F), L(F,X) andin PSPACE for L(FX), L(U), L(U,S.X), ETL(G).

Proof: We reduce KDM to MC for L(F), L(F,X), L(F,X), L(U), L(U,S,X) and ETL(G).

Let K=(N,R,77) be a Kripke-structure with n(x)cP for all xeN, and 61,6,eN; feL with al the atomic
propositionsin P (where L denotes any of L(F), [(F ,X), L(F,X), L(U), L(U,5,X) and ETL(G)).

By dualizing the assignments of atomic propositions of nodes, we get a Kripke-structure K =(N,R,7),
where, N={XxeN}, R={(X,y)|(xy)eN} and 7(X)=P -n(X).

Construct another Kripke-structure K'=(N",R’,77) fromK and K asfollows:

N ={(s,8,))s e N.5 e N.n(8) =77(5,)} ;

R is defined by the rule: ((s,5,),(t,1,)) e R iff (spt))eRand (5,,1,) eR, where (s,5) (t,,)eN";

7' (8.5)=n(s) for (s,8)eN".

Now we prove that there are dual paths p, q in K starting from &;, &, respectively such that (Sp,sg’) = f and
(S, s T iff (5,,6,)eN" andthereisapathp” inK starting from (5,,6,) such that (Sp*,sg’*) EfAaf.

“Only if” Part: Suppose that there are dual paths p, q in K starting from &,, &, respectively such that
(Sps)ET and (ST

It is easy to see that thereisapath § in K starting from 52 such that 77(q)=P —#7(q) for al i>0 and
(S;.s3) [ T according to Theorem 3.1.

Then for al i>0, 7(G)=P -7(q)=7(p),thus (p.,G)eN".And for al i>0, (p,p:1)eR, (G.G.,) R, thus
((p1,G),(PiayG,y)) € R . Consequently, p* = (P, G,)(Py,G)--(p;,G)... is a path in K" starting from (51,52) such
that (S,.s)f and (S,,f)f since (S, )T and (ST

“If" Part: Suppose that (,,5,) € N* and there is a path p* =(py,T,)(Py.0).-(P,.8)... in K’ starting from
(6,,6,) such that (Sp«,Sop')|=f/\f_, then for al >0, 7(p)=7(G) . (F.p1)eR and (§,q,,)eR . Thus
P=poPs...Pi... is a path in K starting from &, such that (S,,s}) = f and §=0q,q,..... isapathin K starting
from 52 suchthat (S;,s) = f , then there is a path q in K starting from &, such that n(q)=P-7(G)=P -n(p,)
for all i>0, and (S,,5))|= f according to Theorem 3.1. Now we get the desired dual paths p, g in K starting from
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81, O, respectively.

Thus we have reduced KDM to MC and it is easy to show that the reduction is in polynomial time, then KDM
isin NP for L(F), E(F,X) and in PSPACE for L(F,X), L(U), L(U,SX) and ETL(G) since MC is shown to be
NP-complete for L(F), E(F,X) and PSPACE-complete for L(F,X), L(U), L(U,S,X) and ETL(G) in Ref.[2]. O

5 Conclusions and Remarks

In this paper, we first defined the concept of dual models of propositional linear temporal logic formulas, and
then investigated the complexity of dual models problem (DM) and the problem of determination of dual modelsin
a Kripke-structure (KDM) for various propositional linear temporal logics. We proved that the DM
and KDM for L(F) and E(F,X) are NP-complete, DM and KDM for L(F,X), L(U), L(U,X), L(U,S,X), ETL(G) are
PSPACE-complete (Table 1).

Tablel The Complexity of DM and KDM

Logic DM (dual models) KDM (determination of dual models in Kripke-structure)
L(F)
L(F,X)
L(F,X)
L(V)
L(U,X) PSPACE-Complete PSPACE-Complete
L(U,SX)
ETL(G)

NP-Complete NP-Complete

As a matter of fact, the reductions used in Theorem 4.1, Lemma 4.3 and Lemma 4.4 are general enough to
determine the complexity of almost all propositional linear temporal logics defined so far only if the logic admits
complete Boolean operators (since in the proof of Theorem 4.1, Lemma 4.2 and Lemma 4.3, “A” and “v" operators
are necessary). For instance, in Ref.[5], the complexity of SAT and MC problems has been investigated
systematically for various fragments of propositional linear temporal logics by bounding the number of atomic
propositions and the number of nesting of temporal operators used in temporal logic formulas. By applying
Theorem 4.1, Lemmas 4.3 and 4.4, we can conclude that DM and KDM problems have exactly the same complexity
as SAT and MC problems for those logics defined in Ref.[5].

It is also interesting to investigate further whether there are other variants of SAT for Boolean logic that can be
generalized to propositional linear temporal logics.
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