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Abstract: In recent years, the explosively growing amount of data in numerous clustering tasks has attracted
considerable interest in boosting the existing clustering algorithms to large datasets. In this paper, the mean
approximation approach is discussed to improve a spectrum of partition-oriented density-based algorithms. This
approach filters out the data objects in the crowded grids and approximates their influence to the rest by their
gravity centers. Strategies on implementation issues as well as the error bound of the mean approximation are
presented. Mean approximation leads to less memory usage and simplifies computational complexity with minor
lose of the clustering accuracy. Results of exhaustive experiments reveal the promising performance of this
approach.
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1 Introduction

Clustering analysis has been recognized as a primary data mining tool for knowledge discovery in numerous
application fields such as pattern recognition, genome analysis, and market research. However, because of fast
technological progress, the amount of data stored in the database increases sharply. Although various algorithms are
constructed, few of them show preferable efficiency when facing large scale datasets. Another problem a clustering
algorithm must face in dealing with large datasets is memory availability. Inefficient usage of the limited memory
space can degrade the behavior of a clustering algorithm considerably.

Grid-partition method has been employed to develop a series of powerful clustering algorithms!"l. In this
paper, we analyze several typical grid-based algorithms and introduce a novel approach to boost the behavior of
them. The key idea of our approach is to apply mean approximation on the crowded grids. We analyze this
approximation theoretically along with extensive experiments. Results show that mean approximation on the
crowded grids can elevate the efficiency of an algorithm greatly with relatively little loss of its accuracy. To our
knowledge, this is the first paper that deals with this problem explicitly in the data mining literature.

1.1 Related work

Many clustering algorithms start with partitioning the data space of the dataset into a set of hypercubes (we
call them grids, here after, for convenience). For this reason, we call these algorithms grid-based. Generally, with
the grid-partition mechanism, an algorithm holds information of the data objects scanned from the database into the
grids, performs data retrieval, aggregates statistical values or proceeds other grid-wise computations of the data
objects. This approach enables the algorithm to manage the data objects effectively, such as storing the data objects
in K*-tree or X-tree!?! which is very efficient for storage and fast retrieval. The most prominent representatives of
these algorithms are Optimal Grid-Clustering™, Waveclustert”!, CLIQUEY!, STING!® and DENCLUE!.

In this paper, a special spectrum of the grid-based algorithms are concerned. These algorithms manage the dataset
with the grids, but cluster the data object point-wisely by computing density functions defined over the underlying
attribute space. Literarily, these algorithms are categorized as density-based because they only use grid-based technique
at their initial stage while taking analytical methods as their major principle instrument!!). A set of this kind of hybrid

1377101 They share the following two common ideas:

algorithms has been presented in the databases literature

1) Data space partition: all of the algorithms segment the data space into grids and assign each data object to a
proper grid. In this way, these algorithms limit the search combinations greatly thus relieve the burden of
complicated calculation. Further, these algorithms are independent of data ordering. This is another advantage over
those Hierarchical or relocation approaches, which are very sensitive with respect to data ordering.

2) Density computing: these algorithms cluster the dataset analytically by computing density functions defined
over the underlying attribute space. Firstly, the influence of each data object is formally modeled using a
mathematical function, which is called influence function. The influence function describes the impact of a data
object within its neighborhood. Then, the clusters are defined as the data sets in the dense regions which are
separated using certain techniques. Apparently, this kind of approach has a firm mathematical foundation, which
enables the algorithms to define and find arbitrary shaped clusters as well as to withstand the noise in the dataset.

These algorithms are often commented highly and proven to be powerful in dealing with various clustering
applications with large and noisy dataset. However, with a close look into the algorithms, we find that they are still

improvable for even better achievement. This is the proposal of this paper.
1.2 Our contribution

We introduce a concept called gravity center, the mean value of the data objects in a grid, and demonstrate why

and how the gravity center can play an important role in grid-based clustering. We analyze the error introduced by
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employing mean approximation on the grids and give the error bound mathematically. We also forward two strategies
to imbed the approximation into different phases of a clustering algorithm. We present by exhaustive experiments to
show that the error of mean approximation is minor so that it affects little of the accuracy of the clustering results.

The paper is organized as follows. We first give an overview of a typical algorithm that falls within our scope
in Section 2. In sections 3, we analyze the error involved in the mean approximation and forward its upper error
bound. Implementation techniques on how to realize mean approximation in clustering are also concerned. In

section 4, we present the results of experimental evaluations. Finally we give comments and conclude the paper.

2 Review of the Grid-Based Algorithms

In this section, we focus exclusively on the most well known representative of the algorithms addressed above,
the DENCLUE (DENsity-based CLUstEring) developed by Hinneburg et al., The definitions and ideas it involved
are essential for us to forward our results.

Let A={4,,4,,...,4,} be a set of domains under a metric space, and S =4 x4, x...x 4, be the minimum
bounding hyper-rectangle of the data space. The input D is a set of k-dimensional data objects and | D |= N .

Definition 1. (Influence function) The influence function of a data objectq € D is a function f : D —> R, ,
such that Vpe D, f/(p)=f,(q,p).

The influence functions can be square wave function: f;}um (p)=1, if and only if dist(q,p) <o, or the

7#(1?-,‘1)2

Gaussian influence function fJ (p)=e ?* , etc. An influence function has the property: /) (p,) = f(p,), if

and only if dist(q, p,) < dist(q, p,) . A detailed introduction to the influence function can be found in Ref.[11].

Definition 2. (Density function) Given dataset D and the underlying attribute space S, for Vp € S, the density
function at point p is defined as: fBD (p)= ZZI S5 (p).

With the density function defined, a series of density attractors can be obtained, where density attractors are
local maxima of the density function. In DENCLUE, a cluster is defined mathematically as the subset of data
objects that are attracted by their common density attractor (center defined) or set of attractors (arbitrary-shape).

Definition 3. (Center-Defined and arbitrary-shape cluster) A center-defined cluster (wrt to o,&) for a density
attractor p~ is a subset C < D, with p e Cbeing density attracted by p and f°(p")>¢& . An arbitrary-shape
cluster (wrt to o, ¢ ) for the set of density attractors X is a subset C < D, where

1.VpeC,ap e X:fP(p") =&, pis density attracted to p” and

2.Vp,,p,€C,3 apath Pc F*from p, to p, with VpeP:fP(p)<é&

Based on the above definitions, the DENCLUE algorithm first partitions the data space S into grids. Then,
with one scan through the dataset D, all data objects are mapped into proper grids and all the populated grids are
numbered depending on their relative position from a given origin. For efficiency reason, the populated grids are
classified into highly populated grids (with N, >¢&,) and sparse grids. Only grids that are highly populated are
clustered, while the points in sparse grids are ignored as outliers. Practically, DENCLUE uses local density and
gradient to approximate the global density and gradient by considering the influence of nearby objects exactly
whereas neglecting those lying farther then the distance thresholdo,, =10 .

As addressed in section 1.1, DENCLUE inherits advantages from both grid partition and density consideration.
It has a firm mathematical foundation and generalizes other clustering methods, such as DBSCAN, k-Means clusters.
The algorithm is stable with respect to outliers and capable of finding arbitrarily shaped clusters. While no clustering
algorithm could have less than O(N) complexity, the runtime of DENCLUE scales sub-linearly with O(Nlog N) .
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However, there are still improvements that can be done to boost it for more efficiency or to scale it up to even
larger datasets. Firstly, DENCLUE needs to hold all of the original data to fulfill its clustering procedure. Thus, its
behavior depends on the memory availability. For a large dataset that can not be fitted into the main memory, swap
in and swap out of the data objects can degrade its behavior sharply. Secondly, for each data object to be clustered,
the algorithm has to compute its local density value by summing up all the influences of nearby objects with a point
wise manner, whether those points are crowded together or distributed sparsely. It pays no attention to the statistical
information of the grids around a data object. This negligence also complicates the algorithm markedly.

In next section, we introduce mean representation of the crowded grid. We analyze how to use mean

approximation in density computation and the error drawn by such kind of approximation.

3 Mean Approximation and Its Error Bound

3.1 Key ideas of our approach

The key idea of this paper is to take more advantages from the grid mechanism. The considerations include:

1) The data space is usually not uniformly occupied with the dataset. This inhomogeneity results in diversity
of data objects in different grids. However, when the grid width is small, it is reasonable to assume that a single grid
is occupied homogenously with the data objects.

2) With a predefined threshold &, it is provable that when a grid is crowded enough with the data objects, its
member objects must belong to a same cluster. Therefore, these objects can be freed from memory even before the
clustering procedure started. The only information to be kept is the point count and the gravity center of the points
within this kind of grid.

3) To cluster an object in a less-crowded grid, we need to compute its density value. Since the objects in a
crowded grid are substituted simply by their center-of-gravity. The point-to-point computations related to these

objects are simplified as a single gravity-center-to-point computation.
3.2 Definitions and main results

Let D be a set of N k -dimensional data objects in an Euclidean space. Given a real number o, the domain
space S is partitioned into a set of non-overlapping k£ -dimensional grids with equal width o in each dimension.
Definition 4. (Gravity center of a grid) Let C be a grid with m data objects p, = (x,,...,x;,) € C,i=12,..,m.

. . 1 . . 1 & 1 &
The gravity center G, of C is the representative of the m data objects, i.e., G. =( yy,..., ¥, ) = (—Zx‘.1 ,.,.,—Zx,.k ).
m i m i

Definition 5. Let C be a grid with gravity center G, . For Vg ¢ C, the influence and the mean influence of C on
to ¢ is defined respectively by /“(q) =D /" (q), Fp=m f%(q).
i=1
Theorem 1. Given the threshold & as in Definition 3 and the grid C of widtho > 0,34 > 0such thatifm> 1,
then all the m data objects in C must belong to same cluster.
Proof. Since the length of the longest diagonal of the grid Cis \/;a in ak -dimensional data space, thus,
Vp,qeC , d(p,q) <vko .1f we choose A = & f;' (ko) , then for Vp e C withm > 4, we have

P =2 P2 ) 2 omf,(ko)2 2 f,(ko) = £.
qeD qeC
Let p* be the density attractor of p . Since f”(p") is the local maximum of the density function, we have
fP(pY= fP(p)=& . Thus p is a member point of the cluster attracted by p*. If there exist p'e C, p'# pand p'is
attracted by attractor p; # p’, from Definition 3, we know p’, p must also belong to the same multi-attractor cluster
because the overall density of C is large than & . (I
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Corollary. For the Gaussian influence function, A =¢&- e 2 For the Square wave influence function, A =¢ .

From Theorem 1 and its corollary, it is clear that for a chosen influence function, all the points in a “dense” grid
can be taken for sure as members of a cluster. Thus, these points can be directly assigned to a cluster and laid aside in
the data scanning phase. However, if these points are freed and their influences on the nearby points are substituted by

the gravity center, how much error will be introduced? Theorems 2 and 3 deal with this approximation.
Theorem 2. Let C be a grid uniformly occupied with m data objects. For each point ¢g¢C, Iy, eC

such that f (q) =mf,"(q) .
Proof. We denote by V' the volume of grid C and VV an arbitrary micro-cube of C with volume VV . Since the
data objects are uniformly distributed in C, the number of points within VI ismVV /V . If we assume VV —0,

then the overall influence of the points in VV is approximated by:

155 @D=2 o fs @) =mfy (g.0)VV IV,
where ¢ is an arbitrary data object outside grid C. Thus

FD=2 D fa@y)=2mfy (g, yNV IV =%If3 (¢,)dy as VV — 0.

vV yevy vy

From Cauchy’s integral theorem, 3y, € C such that £ (q) :%fB (g,y0) -V =mf3"(q) . ]

For the density defined using the Gaussian influence function, we further have the follow theorem.
Theorem 3. Vg ¢ C, let £5,..(q) and fG(fzu.vx (g) be defined as in Definition 5 for the Gaussian density function

respectively, then the relative error bound for the substitution of £S5,  (q) by ]N’cgm(q) is given by:
5 £284(G,..q)

R,=1-e¢ 20> where & is the distance from the Cauchy’s median point ¥, to the gravity center G, .

Proof. From Theorem 2,3 y, e C such that £5,_(q) = mf°..(¢q) . Therefore, the relative error bound

Gauss

d(30:9) d(G..9) (d(G,.q)6) d(G,9) ™%
Yo G, 2 2 2 2 _07%204d(G,..9)
R =|Lous (@) —mfe.. (@) || 25 _me 20 o 2" _e g =1 ‘ 0
B mch (9) d(G.q) _d(G,.9)
Gauss me 202 e 202

For the error bound deduced above, we further have Lim; , R, =0. This fact is especially revelatory for us to

0
make sure the puniness of the relative error when applying approximation to a point close to the grid. For a point far
away from the grid, the absolute error introduced is also negligible because of the negative exponential property of

the influence function.
3.3 Employs mean approximation to boost the algorithms

Based on the results of section 3.2, we forward the approximation approach to the algorithms that fall in the
scope of this article. These revisions do not inflict the principal mechanisms of the algorithms.

1) Data freeing while scanning: In the data scanning stage, free all the data objects dynamically of those girds
of which the point counts exceed a predefined value 4. Instead, the gravity centers of the data objects in these grids
have to be updated whenever new data objects fall into them.

2) Approximated density computation: Two strategies are available to simplify the density and gradient

computation procedure in the clustering stage. The first one is the complete gravity-center-to- point approximation.

That is, for each point p € D, the density value at p is approximated by ]7 P(p)= ZC m, - % (p), where the sum is
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done on all the populated grids. This approach may result in less accurate clusters. However, the complexity of the
density computation is reduced to O(kN) . Another approach is to apply gravity-center-to-point strategy only to the

dense grids (with objects more than A ) from which the data objects are freed already. i.c.,

F2=Ps fp+ Y Y.

m(,Zi m(,<)u qeC
For a skewed dataset with many “dense” grids, this strategy also relieves much of the burden from the

computation.

4 Experimental Results

To test the efficiency and effectiveness of the mean approximation approach, we run sets of experiments on
both real world and synthetic datasets. All the experiments were conducted on a HP 3000 933 MHz with 256M
memory running Windows 2000. The times are well-clock time including CPU and I/O times.

The first experiment was done with a 2-D dataset containing 400 objects on the square[0,20]x[0,20] jointly
generated by normal, Gaussian and random data generators (See Fig.1(a)). We partitioned the square with width
o = 0.5 on both dimensions. As a result, there are 11 among the 1600 grids having more than 5 points occupied and
the total points in them is 70. Figure 1(b) shows the Gaussian density function of the origin dataset; Fig.1(c) shows
the complete gravity-center-to-point density function. Surprisingly, the two figures show almost no difference

between each other. This experiment proves the applicability of our mean approximation approach.

Fig.1 Mean Approximation on a 2-D dataset. (a) Distribution of
the objects; (b) Density function of the dataset; (c) Density
function with mean approximation on all non-empty grids

Secondly, we processed error evaluations with a single grid (dimension £=2, 10, 50 respectively) of edge- width
o = 0.5 occupied by varied points (m) and a point of different point-to-gravity-center distance d(q,G,) outside the
grid. We computed both exact and gravity-center-to-point influence (i.e., f“(q) and }C(q)) of the grid to the object. The
absolute error (a.e) and relative error (r.e) of each run is listed in table 1. From the table, we see that for a data
object very close to the grid, the relative error is less then 1% except the case k=2, m=10. For a point far from the
grid, the absolute error is very little although the relative error may be big. The result of this experiment highly
favors the mean approximation approach.

The third experiment compares efficiency of mean approximation over the original algorithm of DENCLUE.
The data used was the Forest Cover Type Dataset from the UCI KDD achieve, which consists of 581 012 rows of
records. Our reconstructed dataset includes the first three numerical values (elevation, aspect and slope) along with
the attribute of cover type. The normalized attribute space was partitioned with width o =0.02 along each
numerical dimension. Figure 2 indicates the percentage of dense grid and percentage of data object occupied in

these grids under varied density thresholds. Figure 3 shows the time used by computing local density function of the
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dataset. The top curve shows the time used without any approximation on all objects with locality o =0.02
(i.e.,d(p,q)<0.02 ). The two bottom curves show the time used by mean approximated computation with
locality o =0.1 . Although the locality of mean approximated computation is 5 times larger than the
non-approximated run, the partial approximated runs are still 10 to 50 times faster than the non-approximated runs
depending on the given density threshold. Again, the complete point-to-gravity-center runs are nearly 3 times faster

then the partial runs with same density threshold.

Table 1 Absolute and relative error under different grid density and

gravity-center-to-point distance

kom dgp)  fYU@)  f@  ae r.e.(%)
10 0.2647 8.692 8.566 0.126 1.4
) 2.279 ~0 ~0 - X
00 0.259 436.2 4339 2277 0.52
2259 0.028 0.035 —0.00 =22
10 0.275 9.702 9.674 0.028 0.2
10 3.568 2.798 2.801 —0.00 —0.09
00 0.259 486.6 485.0 1.6 03
3.969 0.916 0.941 —0.02 27
10 0.402 9.871 9.866 0.005 0.05
50 3.745 3.255 3.258 0.003 0.1
o 0.268 99.42 99.27 0.156 0.15
7.455 1.171 1.174 0.003 0.25
8
80% 3 A N R R A .\
—&— Percents of dense cells & = - - - - -
60% P £ points i § —— Partial mean approx.
W Percents of points in S —«— Complete mean approx.
40% dense cells .
. —a— No approx.
i=3
20% 3
"\‘\ R . o
0% | | | T T e T 4 . a * * = '
0pts QLS 0pts 0pts Opts " x> > 3] o "o
10 3009 50! 10 90 \QOF A0 5000 4009 FRMIRN
Fig.2 Percentages of dense grids and their data Fig.3 Time used for none approximation,
objects under varied density thresholds partial and complete approximation runs

5 Conclusions

Recently, the identification of clustering as a central task in data mining has attracted researchers to
investigate the scaling of clustering methods to large datasets. The key concerns of scaling a clustering algorithm up
to large dataset are memory usage and time efficiency. This paper focuses on the effects of mean approximation to a
series of clustering algorithms that are based on both density function computation and grid-partition mechanism.
We analyze the error introduced by mean approximation and give a proof for its error bound mathematically.
Furthermore, our extensive experiments demonstrate high capability, minor loss of accuracy of this approach. Mean
approximation can be implemented partially or completely into the algorithms to gain significant improvement both
in memory usage and time efficiency. Due to the promising performance of mean approximation, we believe that
our approach is quite reasonable and applicable to scaling a spectrum of clustering algorithms up to much larger

datasets.
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