
 Vol.13, No.8 ©2002 Journal of Software 软 件 学 报 1000-9825/2002/13(08)1395-07

Distributed Real-Time Transaction Commit Processing

QIN Biao , LIU Yun-sheng

(College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
E-mail: biaoqin@263.net
Received June 4, 2001; accepted May 10, 2002

Abstract: It is difficult for a distributed real-time transaction to satisfy its deadline because of the complexities
of its commitment processing. A new commit protocol called A2SC (active double space commit) is proposed,
which cater for the distributed real-time transaction commitment processing. All kinds of dependencies caused from
data conflicts access are analyzed. When data conflicts between the prepared transaction and the execution
transactions occur, A2SC allows the execution transactions to access the locked data optimistically in a controlled
manner. When the prepared transaction aborts, only transactions in its abort dependency set are aborted.
Furthermore, a notion of fruitless run is proposed. When a transaction finds fruitless run, it will actively abort.
Extensive simulation experiments have been performed to compare the performance of the A2SC with other
protocols such as the base protocol, the PROMPT and the DDCR. The simulation results show that A2SC is highly
successful in minimizing the number of missed transactions deadlines. So A2SC caters for high-performance
distributed real-time transaction.
Key words: distributed real-time transaction; deadline; commit protocol; abort dependency; commit dependency

Researchers had proposed some real-time commit protocol in the literatures. Gupta[1] has proposed Opt
protocol, which allowed requesters to access data held by committing transactions. Further Gupta[2] proposed
Healthy-Opt protocol. In Healthy-Opt, a health factor Ht is associated with each transaction T and a transaction is
allowed to lend its data only if its health factor is greater than a minimum value M. Haritsa proposed PROMPT[3].
The protocol allows transactions to “optimistically” borrow, in a controlled manner, the updated data of transactions
currently in their commit phase. This controlled borrowing reduces the data inaccessibility and the priority
inversion that is inherent in distributed real-time commit processing.

Lam proposed DDCR[4]. Conflict resolution in the DDCR is divided into two parts: (a) resolving conflicts at
the conflict time; and (b) reversing the commit dependency when a transaction, which depends on a committing
transaction, wants to enter the decision phase and its deadline is approaching.

This paper proposes a new real-time commit protocol, called Active double space commit (A2SC). The main
contributions of this paper are the followings:

First, A2SC proposes the notion of fruitless run and extends the property of “active abort”[3]. Second, A2SC

 Supported by the National Natural Science Foundation of China under Grant No.60073045 (国家自然科学基金); the Defence

Pre-Research Project of the ‘Ninth Five-Year-Plan’ of China under grant No.00J15.3.3.JW0529 (国家“九五”国防预研基金); the National

Doctoral Fundation of China (博士点基金)
QIN Biao was born in November 1972. He is a Ph.D. candidate at the College of Computer Science and Technology, HUST. His

research interests are distributed real-time database, active database and electronic commerce. LIU Yun-sheng was born in 1940. He is a
professor and doctoral supervisor at the College of Computer Science and Technology, HUST. His current research areas include advanced
databases, database and information system development, real-time data engineering, and software methodology and engineering
technology.

 1396 Journal of Software 软件学报 2002,13(8)

allows a non-healthy transaction to lend its locked data to the transactions in its commit dependency set. Third,
when a prepared transaction aborts, only the transactions in its abort dependency set are aborted.

The rest of this paper is organized as follows. Section 1 describes a distributed real-time database system
model. Section 2 proposes A2SC protocol. Section 3 reports on the performance evaluation of the new protocol.
Finally, in Section 4 we present the conclusions of our study.

1 Distributed Real-Time Transaction Model

The transaction model used in this paper is firm real-time transaction. We modify the firm deadline semantics
in the distributed environment as follows[3].

Definition 1. A distributed firm-deadline real-time transaction is said to be committed if the master has
reached the commit decision before the expiry of the deadline at its site. This definition applies irrespective of
whether the cohorts have also received and recorded the commit decision by the deadline.

To ensure transaction atomicity with the above definition, the prepared cohorts that receive the final decision
after the local expiry of the deadline still implement this decision. And the transactions, which would normally
expect the data to be released by the deadline, only experience a delay. Sharing of data items in conflicting modes
creates dependencies among the conflicting transactions and constrains their commit orders. Basically there are two
kinds of dependencies, commit dependency and abort dependency[5].

Definition 2. The set, called abort dependency set, is made up of those transactions which are abort dependent
on transaction T, which is denoted by ADS(T). So ADS(T)={Ti|TiADT}.

Definition 3. The set, called commit dependency set, is made up of those transactions which are commit
dependent on transaction T, which is denoted by CDS(T). So CDS(T)={Ti|TiCDT}.

Definition 4. That a transaction’s run will miss its deadline is called fruitless run.
A health factor is defined as follows[3], HFT (health factor=TimeLeft/MTT), where TimeLeft is the time left until

the transaction’s deadline, and MTT is the minimum time required for commit processing. The health factor is
computed at the point of time when the master is ready to send the prepare messages. MinHF is the threshold that
allows the data held the by committing transaction T to be accessed. The fruitless run lies in three cases: First, a
cohort T is in executing state and D(T)−MTT＜0; Second, HFT＜0; Third, D(T)＜0 and T is in the voting phase.

2 The A2SC Protocol

The communication delays caused by message exchanges constitute substantial overheads to the response time
of a distributed transaction. Thus, it becomes more difficult to satisfy the timing constraint of transactions in
DRTDBS than in a centralized one[6]. In order to cater for the deadline, the A2SC protocol cannot require many
message passings in processing the local commitment. Thus a transaction table at each site maintains the followings
information for each local active transaction or cohort Ti:

CDS(Ti): the set of transactions which are commit dependent on transaction Ti;
ADS(Ti): the set of transactions which are abort dependent on transaction Ti.

2.1 “Active Abort” in global transaction space

In global transaction space, a cohort will be “active abort” because of the following two reasons. First, a
cohort will abort whenever it finds that its run is fruitless run. Second, a cohort that is not yet in its commit phase
can be aborted due to conflicts with higher priority transactions. If the first case happens, there is no need for the
master to invoke the abort protocol since the cohorts of the transaction can independently realize the fruitless run. If
the second case happens, it may be better for an aborting cohort to immediately inform the master so that the abort

 覃飙 等:分布式实时事务提交处理 1397

of the transaction at the sibling sites can be done earlier.
If a cohort Ti finds its fruitless run
 It will abort silently without exchanging messages with its master
else

if a cohort Ti conflicts with a higher transaction && Ti is not in commit phase {
 Ti tells its master that it will abort

 Ti aborts }

2.2 “Optimistically Processing” in local transaction space

In the local transaction space, let T1 be a local transaction or cohort holding a lock on data item x and be in
committing state, and let T2 be a local transaction or cohort requesting the same data item x in the executing state.
The essences of A2SC protocol are (1) concurrency control is based on lock scheme; (2) each transaction has a
health factor and T2 is allowed to access the data held by the committing transactions in a controlled manner.

When data conflicts occur, there are three possible cases of conflict: (1) write→read conflict; (2) write→write
conflict; (3) read→write conflict. The details in resolving data conflict are processing as follows:

When T2 had accessed the locked data, three situation
completed local data processing; (2) T2 completes data proc
aborts before T receives its global decision. So the protocol w

E

T2 is granted to write-lock;}

O

and execute as usual}}

e

{

e

2.3 Discussion on the proposed protocol

The A2SC is an improvement for PROMPT. The impro
notion of fruitless run and extends the property of “active abo
which will minimize the wastage of both logical and physic
Non-healthy transaction can lend locked data to its comm

lse {

If { MinHFHFT ≥
1

ADS(T1) = ADS(T1)∪{T2}
T2 is granted to read-lock;}

Else
T2 will be blocked; }
 }
If T1 is fruitless run
Active abort T1

Else {
If T2 is fruitless run

Active abort T2

 Else {
If T2CD T1 {

CDS(T1) = CDS(T1)∪{T2}；
s may arise. (1) T1 receives decision before T2 has
essing before T1 receives its global decision; (3) T2
ill process as following:

}
1

ne: if T1 receives global decision before T2 ends
execution

 {if T1’s global decision is commitment
 {T1 enters the decision phase
 all transactions in CDS(T1)∪ADS(T1) will

be released and execute as usual }
 else
 { T1 aborts

aborts all transactions in ADS(T1)
all transactions in CDS(T1) will be released
lse if T2 ends execution before T1 receives global
decision

 T2 waits until T1 receive global decision ||
T2 is fruitless run

if T1 receives global decision
 goto One

else {
 T2 active aborts
Deletes T2 from CDS(T1)∪ADS(T1)}}

lse { undoes and aborts T2

deletes T2 from CDS(T1)∪ADS(T1)}

vement lies in three aspects. (1) A2SC proposes the
rt”. So it will actively abort fruitless run transactions,
al system resources. (2) When data conflict occurs,
it dependency transactions in A2SC. Because any

 1398 Journal of Software 软件学报 2002,13(8)

borrower has to be blocked if it completes data processing before the lender receives global decision, A2SC cannot
influence the serialization order. (3) If the prepared transaction aborts, the transaction in its commit dependency set
can execute as usual in A2SC.

And we don’t change other properties of PROMPT. So A2SC cannot bring other negative influences. Thus
A2SC is an improvement for PROMPT and has the properties of PROMPT.

3 Performance Evaluation

3.1 Simulation model

The simulation experiments are based on ARTs-II, which is a distributed real-time database system test bed
developed by our lab. The global database (GDB) is modeled as a collection of DBSize pages that are uniformly
distributed across all the sites. At each node, transactions arrive in an independent Poisson rate. The baseline setting
of the values for the parameters is shown in Table 1. The base protocol is 2PC.

Table 1 Baseline values for the model parameters

Parameter Meaning Default setting
Nsite Number of sites 4

SiteID Site Ids 0,1,2,3
AR Arrival rate 3 transactions/s
Tcom Communication delay 100 ms (constant)
SF Slack factor 1~4 (uniform distribution)

Pwrite Write operation probability 0.0~1.0
PageCPU CPU page processing time 5ms
PageDisk Disk page processing time 20ms
DBSize Database size 200 data objects/site

Noper Number of operations in a transaction 3~20 uniformly distributed

Upon arrival, each transaction T is assigned a deadline using the formula DT=AT+SF*RT, where DT, AT and RT

are its deadline, arrival time and resource time, respectively, while SF is a slack factor. The transaction priority
assignment policy used is the widely used Earliest Deadline First (EDF). All the cohorts of a transaction inherit their
master’s priority. Messages also retain their sending transaction’s priority. For concurrency control, the simulation
system adopts an extended 2PL High Priority (E2PL-HP) protocol.

In DRTDBS, the major performance measure is the missing rate, which is defined as: MissPercent=Tmiss/TTotal,
where, Tmiss and TTotal are the number of transactions missing their deadlines and the total number of transactions
processed respectively. The way to evaluate the system workload is as following: (1) if 0<MissPercent<20, system
is under normal loads; (2) if 20<MissPercent<100, system is under heavy loads.

3.2 Analysis the result of experiments

Using the firm-deadline DRTDBS model described in the previous section, we conducted an extensive set of
simulation experiments comparing the performance of A2SC with that of the 2PC, PA, DDCR and PROMPT. Our
experiment was conducted using default settings for all model parameters (Table 1), resulting in significant levels of
both resource contention (RC) and data contention (DC).

 覃飙 等:分布式实时事务提交处理 1399

3.2.1 Determination of the value for MinHF
A range of MinHF values is considered in our experiments, including MinHF=1, MinHF=1.2, MinHF=2,

MinHF =∞, which is equivalent to the 2PC protocol. The results for these various settings are shown in Fig.2. From
the Figs.1(a),(b), we can see that their MissPercent is approximately equal when MinHF=1.2 and MinHF=2. We can
see that MinHF =1.2 is in general better than MinHF =1 and MinHF =∞ and especially so under heavy loads in the
pure DC environment. From Figs.1(c)(d), we can see the success ratio of MinHF=1.2 is seen to be much higher than
that of MinHF=1. And the success ratio of MinHF=2 is only slightly better than that of MinHF=1.2. We observe
that the performance of 2SC for MinHF=1.2 and MinHF=2 is almost identical. So MinHF=1.2 is efficient to control
optimistically data access. Thus the threshold of MinHF is 1.2. The remaining experiments on the 2SC will use this
value for MinHF.

Fig.1

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

Arrival rate/site

M
is

s(
%

)

MinHF=1

MinHF=1.2

MinHF=2

MinHF= ∞(2PC)

(a) MissPercent (RC+DC)

0

10

20

30

40

50

60

70

80

2 4 6 8 1

Arrival rate/site

M
is

s(
%

)

0

(b) MissPercent (pure DC)

0

20

40

60

80

100

0 2 4 6 8 10

Arrival rate/site

Su
cc

es
s r

at
io

(d) Success ratio (pure DC)

0
20
40
60
80

100

0 2 4 6 8 1

Arrival rate/site

Su
cc

es
s r

at
io

0

(c) Success ratio (RC+DC)

3.2.2 Performance analysis in different situation
From the Fig.2, we can see the performance between A2SC, PA[7], DDCR, PROMPT and 2PC has little

difference at normal workload. Resources and data conflicts access seldom take place in local site. With workload
increasing, conflict access to resources and data between transactions occurs frequently. In these figure we see PA
always does slightly better than 2PC because PA has lower communication overheads when a transaction aborts.

In DDCR, a higher degree of concurrency can be achieved, as executing transactions can access data items
held by committing transactions in conflicting modes. Also, the impact of temporary failures on transactions in
dependencies set is much reduced by reversing the dependencies between the transactions. So DDCR has

 1400 Journal of Software 软件学报 2002,13(8)

consistently better performance than PA. Three copies of the data may be temporarily created for a data item in the
database in DDCR, which needs much more system resources and serializability checking is difficult. Reversing the
dependency may induce a committing transaction abort. Although PROMPT has properties of healthy lending, it
only needs one copy of data. The property of active abort can reduce system resources wasted by the aborting
transactions. And the property of silent kill can save system resources by eliminating a round of messages when the
transaction misses its deadline. So the performance of PROMPT is considerably better than that of DDCR over most
of the loading range. Finally, we compare the performance between A2SC and PROMPT. From the Fig,2, we can
see the performance of A2SC is in general slightly better than that of PROMPT. This is because A2SC has the
following new properties (1) it can actively abort the fruitless run transaction, (2) non-healthy transaction can lend
locked data to its commit dependency transactions, (3) if the prepared transaction aborts, the transaction in its
commit dependency set can execute as usual. So A2SC has better performance than that of PROMPT. Therefore, the
A2SC has the best performance.

(b) Normal load (pure DC)

0

10

20

30

40

0.5 1 1.5 2

Arrival rate/site

M
is

s(
%

)

2PC PA DDCR

PROMPT A2SC

(a) Normal load (RC+DC)

(c) Heavy load (RC+DC)

0
10
20
30
40
50
60
70
80

2 3 4 5 7.5 10

Arrival rate/site

M
is

s(
%

)

(d) Heavy Load (pure DC)

0

20

40

60

80

100

2 3 4 5 7.5 10

Arrival rate/site

M
is

s(
%

)

0

5

10

15

20

25

30

0.5 1 1.5 2

Arrival load/site

M
is

s(
%

)

Fig.2

4 Conclusions

This paper proposes a distributed transaction model and A2SC protocol. In this model, it is the master who

 覃飙 等:分布式实时事务提交处理 1401

makes decision about the transaction fate. If the master can give the decision before its deadline, the transaction will
not miss its deadline. In A2SC, we propose the notion of fruitless run and extend the property of “active abort”.
A2SC has two properties. One is actively abort in global transaction space. The other is optimistically processing in
local transaction space. Finally we integrate A2SC with E2PL-HP. In this way we can ensure transaction
serializability and atomicity. We compare the performance of A2SC with that of 2PC, PA, DDCR and PROMPT.
The results of simulation experiments have shown that some improvement can be obtained with the use of the A2SC
as compared with the base and other optimistic protocols.

References:
[1] Gupta, R., Haritsa, J., Ramamritha, K., et al. Commit processing in distributed real-time database systems. In: Proceedings of the

17th IEEE Real-time Systems Symposium. 1996. 220～229.

[2] Gupta, R., Haritsa, J., Ramamritha, K. More optimistic about real-time distributed commit processing. In: Proceedings of the 18th

IEEE Real-Time Systems Symposium. 1997. 123～133.

[3] Haritsa, J., Ramamritham, K., Gupta, R. The PROMPT real-time commit protocol. IEEE Transactions on Parallel and Distributed

Systems, 2000,11(2):160～181.

[4] Lam, K., Pang, C., Son, S.H., et al. Resolving executing-committing conflicts in distributed real-time database systems. The

Computer Journal, 1999,42(8):674～692.

[5] Ramamritham, K., Chrysanthis, P.K. A taxonomy of correctness criteria in database applications. VLDB Journal, 1996,5(1):85～

97.

[6] Franaszek, P.A., Robinson, J.T., Thomasian, A. Concurrency control for high contention environments. ACM Transactions on

Database Systems, 1992,17(2):304～345.

[7] Mohan, C., Lindsay, B., Obermarck, R. Transaction management in the R* distributed database management system. ACM

Transactions on Database Systems, 1986,11(4):378～396.

分布式实时事务提交处理

覃 飙, 刘云生

(华中科学技术大学 计算机科学与工程学院,湖北 武汉 430074)

摘要: 由于提交处理的复杂性,分布式实时事务很难满足其截止期.提出了一种新的提交协议 A2SC(主动的双空间
提交),它适合于分布式实时事务提交处理的需要.分析了由于数据冲突访问而形成的各种依赖关系.当处于准备状
态的事务和处于提交状态的事务发生数据冲突访问时,A2SC允许处于执行状态的事务在一种控制的方式下乐观地
访问锁住的数据.当处于准备状态的事务夭折时,仅仅只有其夭折依赖集中的事务夭折.进一步提出了“没有结果的
运行”的观念.当一个事务发现它是没有结果的允许时,它将主动夭折.进行了广泛的模拟实验比较 A2SC 和其它协
议比如基准协议、PROMPT和 DDCR的性能.模拟结果表明 A2SC在最小化错过截止期的事务数方面较成功,因此
A2SC适合于高性能分布式实时事务.
关键词: 分布式实时事务;截止期;提交协议;夭折依赖;提交依赖
中图法分类号: TP311 文献标识码: A

	Distributed Real-Time Transaction Model
	The A2SC Protocol
	“Active Abort” in global transaction space
	“Optimistically Processing” in local transaction
	Discussion on the proposed protocol

	Performance Evaluation
	Simulation model
	Analysis the result of experiments
	3.2.1 Determination of the value for MinHF
	A range of MinHF values is considered in our expe
	3.2.2 Performance analysis in different situation

	Conclusions

