1000-9825/2002/13(08)1395-07 ©2002 Journal of Software Vol.13, No.8

Distributed Real-Time Transaction Commit Processing”

QINBiao, LIU Yun-sheng

(College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
E-mail: biaoqin@263.net
Received June 4, 2001; accepted May 10, 2002

Abstract: It is difficult for a distributed real-time transaction to satisfy its deadline because of the complexities
of its commitment processing. A new commit protocol called A2SC (active double space commit) is proposed,
which cater for the distributed real-time transaction commitment processing. All kinds of dependencies caused from
data conflicts access are analyzed. When data conflicts between the prepared transaction and the execution
transactions occur, A2SC allows the execution transactions to access the locked data optimistically in a controlled
manner. When the prepared transaction aborts, only transactions in its abort dependency set are aborted.
Furthermore, a notion of fruitless run is proposed. When a transaction finds fruitless run, it will actively abort.
Extensive simulation experiments have been performed to compare the performance of the A2SC with other
protocols such as the base protocol, the PROMPT and the DDCR. The simulation results show that A2SC is highly
successful in minimizing the number of missed transactions deadlines. So A2SC caters for high-performance
distributed real-time transaction.

Key words: distributed real-time transaction; deadline; commit protocol; abort dependency; commit dependency

Researchers had proposed some real-time commit protocol in the literatures. Gupta¥ has proposed Opt
protocol, which allowed requesters to access data held by committing transactions. Further Gupta® proposed
Healthy-Opt protocol. In Healthy-Opt, a health factor H, is associated with each transaction T and a transaction is
allowed to lend its data only if its health factor is greater than a minimum value M. Haritsa proposed PROMPT!.
The protocol allows transactions to “optimistically” borrow, in a controlled manner, the updated data of transactions
currently in their commit phase. This controlled borrowing reduces the data inaccessibility and the priority
inversion that isinherent in distributed real-time commit processing.

Lam proposed DDCR. Conflict resolution in the DDCR is divided into two parts: (a) resolving conflicts at
the conflict time; and (b) reversing the commit dependency when a transaction, which depends on a committing
transaction, wants to enter the decision phase and its deadline is approaching.

This paper proposes a new real-time commit protocol, called Active double space commit (A2SC). The main
contributions of this paper are the followings:

First, A2SC proposes the notion of fruitless run and extends the property of “active abort"™®. Second, A2SC

* Supported by the National Natural Science Foundation of China under Grant N0.60073045 (); the Defence
Pre-Research Project of the ‘Ninth Five-Year-Plan’ of China under grant No.00J15.3.3.JW0529 (*“ "); the National
Doctoral Fundation of China ()

QIN Biao was born in November 1972. He is a Ph.D. candidate at the College of Computer Science and Technology, HUST. His
research interests are distributed real-time database, active database and electronic commerce. L1U Yun-sheng was born in 1940. He is a
professor and doctoral supervisor at the College of Computer Science and Technology, HUST. His current research areas include advanced
databases, database and information system development, real-time data engineering, and software methodology and engineering
technology.

© R

http:/ www. jos. org. cn

1396 Journal of Software 2002,13(8)

allows a non-healthy transaction to lend its locked data to the transactions in its commit dependency set. Third,
when a prepared transaction aborts, only the transactions in its abort dependency set are aborted.

The rest of this paper is organized as follows. Section 1 describes a distributed real-time database system
model. Section 2 proposes A2SC protocol. Section 3 reports on the performance evaluation of the new protocol.
Finally, in Section 4 we present the conclusions of our study.

1 Distributed Real-Time Transaction M odel

The transaction model used in this paper is firm real-time transaction. We modify the firm deadline semantics
in the distributed environment as follows®.

Definition 1. A distributed firm-deadline real-time transaction is said to be committed if the master has
reached the commit decision before the expiry of the deadline at its site. This definition applies irrespective of
whether the cohorts have also received and recorded the commit decision by the deadline.

To ensure transaction atomicity with the above definition, the prepared cohorts that receive the final decision
after the local expiry of the deadline still implement this decision. And the transactions, which would normally
expect the data to be released by the deadline, only experience a delay. Sharing of data items in conflicting modes
creates dependencies among the conflicting transactions and constrains their commit orders. Basically there are two
kinds of dependencies, commit dependency and abort dependency!™.

Definition 2. The set, called abort dependency set, is made up of those transactions which are abort dependent
on transaction T, which is denoted by ADT). So ADS(T)={T;|T,ADT}.

Definition 3. The set, called commit dependency set, is made up of those transactions which are commit
dependent on transaction T, which is denoted by CD(T). So CDYT)={T;|T,CDT}.

Definition 4. That a transaction’s run will missits deadline is called fruitless run.

A health factor is defined as followd®, HF+ (health factor=TimeLeft/MT+), where TimeLeft is the time left until
the transaction’s deadline, and MT+ is the minimum time required for commit processing. The health factor is
computed at the point of time when the master is ready to send the prepare messages. MinHF is the threshold that
allows the data held the by committing transaction T to be accessed. The fruitless run lies in three cases: First, a
cohort T isin executing state and D(T)-MTy 0; Second, HFr 0; Third, D(T) 0 and Tisin the voting phase.

2 TheA2SC Protocol

The communication delays caused by message exchanges constitute substantial overheads to the response time
of a distributed transaction. Thus, it becomes more difficult to satisfy the timing constraint of transactions in
DRTDBS than in a centralized one'®. In order to cater for the deadline, the A2SC protocol cannot require many
message passings in processing the local commitment. Thus a transaction table at each site maintains the followings
information for each local active transaction or cohort T;:

CD(T;): the set of transactions which are commit dependent on transaction T;;

ADS(T;): the set of transactions which are abort dependent on transaction T;.

2.1 “Active Abort” in global transaction space

In global transaction space, a cohort will be “active abort” because of the following two reasons. First, a
cohort will abort whenever it finds that its run is fruitless run. Second, a cohort that is not yet in its commit phase
can be aborted due to conflicts with higher priority transactions. If the first case happens, there is no need for the
master to invoke the abort protocol since the cohorts of the transaction can independently realize the fruitless run. If
the second case happens, it may be better for an aborting cohort to immediately inform the master so that the abort

© PEBSFERSAIIFT hipd/ www. jos. org. cn

1397

of the transaction at the sibling sites can be done earlier.
If acohort T, finds its fruitless run
It will abort silently without exchanging messages with its master
else
if acohort T; conflicts with a higher transaction && T;is not in commit phase {
T, tellsits master that it will abort
T, aborts }

2.2 “Optimistically Processing” in local transaction space

In the local transaction space, let T, be a local transaction or cohort holding a lock on data item x and be in
committing state, and let T, be alocal transaction or cohort requesting the same data item x in the executing state.
The essences of A2SC protocol are (1) concurrency control is based on lock scheme; (2) each transaction has a
health factor and T, is allowed to access the data held by the committing transactions in a controlled manner.

When data conflicts occur, there are three possible cases of conflict: (1) write— read conflict; (2) write— write
conflict; (3) read - write conflict. The details in resolving data conflict are processing as follows:

If Tyisfruitlessrun Else{
Active abort T If HF, > MinHF {
Else{ !
If Tyisfruitlessrun ADY(T;) = ADS(T;) {T3}
Active abort T, T, is granted to read-lock;}
Else { Else
If T,CDTy{ T, will be blocked; }
CDY(Ty) = CDS(Ty) {T3} }
T, is granted to write-lock;} }

When T, had accessed the locked data, three situations may arise. (1) T, receives decision before T, has
completed local data processing; (2) T, completes data processing before T; receives its global decision; (3) T,
aborts before T, receivesits global decision. So the protocol will process as following:

One: if T, receives global decision before T, ends else if T, ends execution before T, receives global

execution decision
{if T,sglobal decisioniscommitment { T, waits until T, receive global decision ||
{T, enters the decision phase T, isfruitless run
all transactions in CDS(T;) ADS(T;) will if T; receivesglobal decision
be released and execute as usual } goto One
else else{
{ T, aborts T, active aborts
aborts al transactionsin AD(T,) Deletes T, from CDS(T;) ADS(Ty)}}
all transactionsin CDS(T;) will be released else { undoes and aborts T,
and execute as usual}} deletes T, from CDY(T,) ADST,)}

2.3 Discussion on the proposed protocol

The A2SC is an improvement for PROMPT. The improvement lies in three aspects. (1) A2SC proposes the
notion of fruitless run and extends the property of “active abort”. So it will actively abort fruitless run transactions,
which will minimize the wastage of both logical and physical system resources. (2) When data conflict occurs,
Non-healthy transaction can lend locked data to its commit dependency transactions in A2SC. Because any

© DEEREBAAAIFUN bt/ www. jos. org. cn

1398 Journal of Software 2002,13(8)

borrower has to be blocked if it completes data processing before the lender receives global decision, A2SC cannot
influence the serialization order. (3) If the prepared transaction aborts, the transaction in its commit dependency set
can execute as usual in A2SC.

And we don’'t change other properties of PROMPT. So A2SC cannot bring other negative influences. Thus
A2SC is an improvement for PROMPT and has the properties of PROMPT.

3 Performance Evaluation

3.1 Simulation model

The simulation experiments are based on ARTs-I1, which is a distributed real-time database system test bed
developed by our lab. The global database (GDB) is modeled as a collection of DBSize pages that are uniformly
distributed across all the sites. At each node, transactions arrive in an independent Poisson rate. The baseline setting
of the values for the parametersis shown in Table 1. The base protocol is 2PC.

Table1l Baselinevalues for the model parameters

Parameter Meaning Default setting
Nsite Number of sites 4
SitelD Site lds 0,1,2,3
AR Arrival rate 3 transactions/s
Téom Communication delay 100 ms (constant)
SF Slack factor 1~4 (uniform distribution)
Plirite Write operation probability 0.0~1.0
PageCPU CPU page processing time 5ms
PageDisk Disk page processing time 20ms
DBSize Database size 200 data objects/site
Noper Number of operationsin atransaction 3~20 uniformly distributed

Upon arrival, each transaction T is assigned a deadline using the formula D1=A+SF* Ry, where D+, Ar and Ry
are its deadline, arrival time and resource time, respectively, while SF is a slack factor. The transaction priority
assignment policy used isthe widely used Earliest Deadline First (EDF). All the cohorts of atransaction inherit their
master’s priority. Messages also retain their sending transaction’s priority. For concurrency control, the simulation
system adopts an extended 2PL High Priority (E2PL-HP) protocol.

In DRTDBS, the mgjor performance measure is the missing rate, which is defined as: MissPercent=T s/ Totas
where, Tpiss and Trog are the number of transactions missing their deadlines and the total number of transactions
processed respectively. The way to evaluate the system workload is as following: (1) if O<MissPercent<20, system
is under normal loads; (2) if 20<MissPercent<100, system is under heavy loads.

3.2 Analysisthe result of experiments

Using the firm-deadline DRTDBS model described in the previous section, we conducted an extensive set of
simulation experiments comparing the performance of A2SC with that of the 2PC, PA, DDCR and PROMPT. Our
experiment was conducted using default settings for all model parameters (Table 1), resulting in significant levels of
both resource contention (RC) and data contention (DC).

© PEBSFERSAIIFT hipd/ www. jos. org. cn

1399

3.2.1 Determination of the value for MinHF

A range of MinHF values is considered in our experiments, including MinHF=1, MinHF=1.2, MinHF=2,
MinHF =c0 , which is equivalent to the 2PC protocol. The results for these various settings are shown in Fig.2. From
the Figs.1(a),(b), we can see that their MissPercent is approximately equal when MinHF=1.2 and MinHF=2. We can
see that MinHF =1.2 isin general better than MinHF =1 and MinHF =0 and especially so under heavy loadsin the
pure DC environment. From Figs.1(c)(d), we can see the success ratio of MinHF=1.2 is seen to be much higher than
that of MinHF=1. And the success ratio of MinHF=2 is only slightly better than that of MinHF=1.2. We observe
that the performance of 2SC for MinHF=1.2 and MinHF=2 is almost identical. So MinHF=1.2 is efficient to control
optimistically data access. Thus the threshold of MinHF is 1.2. The remaining experiments on the 2SC will use this
value for MinHF.

100 r —e— MinHF=1 80 -

.l r/‘ 70

80 A

/ —B— MinHF=12 o0 |
70 .

4 50

Sl & MinHF=2 g
7ot v ; gl
40 = 30 |
Bl MinHF= w (2PC) w0l
IV
10 —/‘ 10';
o ‘ ‘ ‘ s w 0!
0 2 4 6 8 10 2 4 6 8 10
Arrival rate/site Arrival rate/site
(a) MissPercent (RC+DC) (b) MissPercent (pure DC)
100 7 \ .
— — i
T] A W o ®
o - -y B
g & S 60
B
g o b o
<] 40 %
3 20 20
0= 0
0 2 4 6 8 10 o 2 4 6 8 10
Arrival rate/site Arrival rate/site
(c) Success ratio (RC+DC) (d) Successratio (pure DC)

Fig.1

3.2.2 Performance analysisin different situation

From the Fig.2, we can see the performance between A2SC, PAl DDCR, PROMPT and 2PC has little
difference at normal workload. Resources and data conflicts access seldom take place in local site. With workload
increasing, conflict access to resources and data between transactions occurs frequently. In these figure we see PA
always does slightly better than 2PC because PA has lower communication overheads when a transaction aborts.

In DDCR, a higher degree of concurrency can be achieved, as executing transactions can access data items
held by committing transactions in conflicting modes. Also, the impact of temporary failures on transactions in
dependencies set is much reduced by reversing the dependencies between the transactions. So DDCR has

© PEBREBALTU bt/ www. jos. org. cn

1400 Journal of Software 2002,13(8)

consistently better performance than PA. Three copies of the data may be temporarily created for a data item in the
database in DDCR, which needs much more system resources and serializability checking is difficult. Reversing the
dependency may induce a committing transaction abort. Although PROMPT has properties of healthy lending, it
only needs one copy of data. The property of active abort can reduce system resources wasted by the aborting
transactions. And the property of silent kill can save system resources by eliminating a round of messages when the
transaction misses its deadline. So the performance of PROMPT is considerably better than that of DDCR over most
of the loading range. Finally, we compare the performance between A2SC and PROMPT. From the Fig,2, we can
see the performance of A2SC is in genera slightly better than that of PROMPT. This is because A2SC has the
following new properties (1) it can actively abort the fruitless run transaction, (2) non-healthy transaction can lend
locked data to its commit dependency transactions, (3) if the prepared transaction aborts, the transaction in its
commit dependency set can execute as usual. So A2SC has better performance than that of PROMPT. Therefore, the

A2SC has the best performance.

%
05 1 15 2
Arrival rate/site

05 1 15 2
Arrival load/site

——2PC ——PA DDCR
PROMPT —X¥—A2SC

(b) Normal load (pure DC)

100

80

Miss(%)

2 3 4 5 75 10
Arrival rate/site

(d) Heavy Load (pure DC)
Fig.2

4 Conclusions

This paper proposes a distributed transaction model and A2SC protocol. In this model, it is the master who

© PEBREBALTU bt/ www. jos. org. cn

1401

makes decision about the transaction fate. If the master can give the decision before its deadline, the transaction will
not miss its deadline. In A2SC, we propose the notion of fruitless run and extend the property of “active abort”.
A2SC has two properties. One is actively abort in global transaction space. The other is optimistically processing in
local transaction space. Finally we integrate A2SC with E2PL-HP. In this way we can ensure transaction
serializability and atomicity. We compare the performance of A2SC with that of 2PC, PA, DDCR and PROMPT.
The results of simulation experiments have shown that some improvement can be obtained with the use of the A2SC
as compared with the base and other optimistic protocols.

References:

[1] Gupta R., Haritsa, J.,, Ramamritha, K., et al. Commit processing in distributed real-time database systems. In: Proceedings of the
17th |EEE Real-time Systems Symposium. 1996. 220 229.

[2] Gupta, R., Haritsa, J., Ramamritha, K. More optimistic about real-time distributed commit processing. In: Proceedings of the 18th
|EEE Real-Time Systems Symposium. 1997. 123 133.

[3] Haritsa, J., Ramamritham, K., Gupta, R. The PROMPT real-time commit protocol. IEEE Transactions on Parallel and Distributed
Systems, 2000,11(2):160 181.

[4] Lam, K., Pang, C., Son, S.H., et al. Resolving executing-committing conflicts in distributed real-time database systems. The
Computer Journal, 1999,42(8):674 692.

[5] Ramamritham, K., Chrysanthis, P.K. A taxonomy of correctness criteria in database applications. VLDB Journal, 1996,5(1):85
97.

[6] Franaszek, P.A., Robinson, J.T., Thomasian, A. Concurrency control for high contention environments. ACM Transactions on
Database Systems, 1992,17(2):304 345.

[71 Mohan, C., Lindsay, B., Obermarck, R. Transaction management in the R* distributed database management system. ACM
Transactions on Database Systems, 1986,11(4):378 396.

(, 430074)

, : A2SC(
A2SC
" . , . A2SC
PROMPT DDCR . A2SC

A2SC

: TP311 A

© kR

http:/ www. jos. org. cn

	Distributed Real-Time Transaction Model
	The A2SC Protocol
	“Active Abort” in global transaction space
	“Optimistically Processing” in local transaction
	Discussion on the proposed protocol

	Performance Evaluation
	Simulation model
	Analysis the result of experiments
	3.2.1 Determination of the value for MinHF
	A range of MinHF values is considered in our expe
	3.2.2 Performance analysis in different situation

	Conclusions

