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Absiract : A novel stochastic neural network is proposed in this paper. Unlike the traditivnal Beltzinann ma-
chine, the new model uses stochastic connections rather than stochastic activation functions. Each neuron has
very simple functionality but all of its synapses are siochastic. [t is shown that the stationary distribution of the
network uniquely exists and it is approximately a Boltzmann-Gibbs distribution. It is alsc revealed there exists a
strong relationship berween the model and the Markov random field. New cfficient techniques are developed to
implement simulated annealing and Beltzmann learning. The model has been successfully applied to a large-scale
face recognition tasx in which face images are dynamically captured from a video source. Learning and recogniz-
ing processes are carried out in real time. The experimental results show the new model is not only feasible hut
also efficient.
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Srochastic computing utilizes what is generally regarded as a waste product random noise. It is expected to
pravide a powerful technology for machine learning and pattern recognition. In the 1960’s, Rosenblat: noticed that
the noise and randomness present in the nervous system were not merely inconvenience because of poor design and
construction, but were essential to the kind of computation brains performel. In a realistic situation it 1s necessary
for a computing system to learn to make association with randomness sirce the environment is roisy and variable.

The neural network ol a stochastic neture s very promising for global optimization. Tt is able to avoid the sys-
temn being trapped in local minima. in a stochestic neural network the information is usually fuzzy and neisy and
each neuron does not have to make very fine diseriminations on its inputs. The cutrput of the network should not be
greatly affected by a single neuron but only determined by tke global state of the network. This is achieved by
building = totally distributed representation inte the netwark. The distributed representation will make the net-
work very robust in a noisy environment and improve the generalization performance-'.

In general a stochastic neural network can be built by intreducing a random mechanism into the traditional de-

terministic network of sigmoid neurcns. The well-known model 1s the Boltzmann machine which uses a stochastic
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sigmoidal activation function. Other techniques such as the ‘pulse stream approach’!®, ‘stochastic logie neural
network’ ™), and ‘spiking neurons’-*"*! zre also widely used.

In this paper we investigate a novel network which uses stochastic connections rather than stochastic activa-
tion functions. [t is shown that there is a deviation of its functionality from that of the standard sigmoid neural net-
work. The behavior of the network is similar to a Boltzmann machine when the size of the net is large. New tech-
niques for simulated annezling and Boltzmann learning have been developed for the new model.

Training 2 neural netwnrk for face recognition is a very challenging task. Much of the present literature on
face recognition with neural networks presents results with only a small size network and a simple structure. The
mostly adopted network is of feed-forward multi-layer structure”’!. Some methods use a hybrid structure®%. We
present a large-size recurrent neural network solutlor using the proposed model. The network has 4827 neurons
and 129951 connections. All neurons except the input units are fully connected. Face images are directly caprured

from & video scurce. The system carries our incremental learning and on-line recognition in real 1ime.
1 Definition

A recurrent stochastic hinary network is = parallelly distributed system in the form of a graph with the follow-
ing restrictions .

+ The edges of the graph are stochastic connectinns associated with certain values called weights. Fach
connection funcrions as a data path. The passing rate of the data is determined by the value of the corresponding
weight. The connections can be excitatory or inhibitory. The former does not change the sign of the data passed on
ity and the latter does change the sign.

* The nodes of the graph are two-state units. They have a dynamic updating mechanism which allows the
units to change their states according to those of their neighbours, Il the net input o a unit is greater than zero
then it outputs 1; if the net input is less then zero it outputs — 1 if the net inpurt is exactly equal to zero then it
randomly chooses 1 or —1 with probability 1/2 each.

We now give a formal definition of the network we have described above.

Definition 1. (RSBN) A recurrent stochastic binary network N (V,W, /) is a pscude graph with vertex set V
having state $€ {- 1, +1;" and edge set W which is a # X » matrix of random variables W, Each W, has the
fcllowing probability density funcrian;

(+pw,)/2 x=1

F =2 (1 —=fw /2 r=—1 (1

0 otherwise
where — 1w, =0 + 1 is the weight value of W, and 050801 is a control parameter. F is a dynamic updating
mechanism of the network. It selects the vertices and changes their states with updating rule

S;=san[ SOWLS,) i DIW,S A0
LT =y
N N ,

If ‘___JJW,,S,:O. then set S, to 1 or — | with probability 1/2.

With the different ways of updating RSBN can have the ‘oliowing two models ;

= sequential RSBN . in which units change their states ane by ane.

+ parallel RSBN, in which units change their states simultaneously.

We say that connections in a recurrent stochastic binary network are symmetric if W, =W, for all / and ;.

It can be seen thart all the weights and the output values can be represented by stechastic binary seyuences if
21

we use a bipolar Bernoulli sequence representation The representation of a real value by a stochastic binary
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sequence is the central idea of ‘stochastic computing” 2. Given a real value r in [—1,1], we may represent it by
a stochastic binary sequence with probability p=(r+1)/2, With a bipolar representation the multiplication of two

[l

real values in [—1,1] can be easily implemented by au Exclusive-Nor gate The highly efficient multiplication is

one of the main advantages of the model.
2 The Stationary Distribution

In statistical mechanics a fundamental result tells us that when a physical system reaches thermal equilibrium

each of the possible states a of the system oceurs with probability
1 -
P e BT

where the normalizing factor

ST it

L= lie
«

I1,1s the Hamiltonian function, £y is a constant and 7 is the temperature. This is the well-known Boltzmann-Gibbs
distribution.

In a sequential or partial parallel Boltzmann machine it can be proved that the steady state of the network
oheys the Boltzmann-Gibhs distributiont.

In a sequential RSBN the steady state of the network alse approximately obeys the Boltzmann-Gibbs distribu-
tion if the size of the network is not too small.

We first define he energy funcrion in the recurrent stochastic binary netwark.

Definition 2. The Erergy Function in a recurrent stochastic binary network is given by
-
H=——142w,55, 2
i

where 8 is the control parameter, w,; is the weight value associated with the stochastic connection W ij and §., 5,
the states of neuron i and j.

Theorem 1. The stationary distribution of a sequential RSBN uniquely exists when the control parameter
B€ [0,1] and the stationary distribution is approximately a Boltzmann-Gibbs distribution if the conpections are
symmmetric and the size of the network is not too small.

Proof.  The proof is achieved by using the theory of Markov chains. First we prove the existence of the sta-
tionary distribution.

For a sequential RSBN N (V W, F) which randoinly chooses a unit 4 and then updates it with the defined rule,
the transition probability p,;1s given by

po= ol Prob( DT WSS, <0) +pProb( 3] WaSiS=0) |

I=1.istk [y
and

N\ Y
pu=1- %f Do

Here the state 7 is denoted by the state vector {51,550, .. 0845, .. 55,1 and the state j denoted by {5,:5:5...

—S8is. .. +S.}. If the control parameter #€[0,1], we have —1<Z3 * w,, <1 for every connection W,.. Thus

b3 Prob| ST WS.S,=0) >0,
I=1d%%

Because the unit toc be updated is randomly chosen from all » units . for each pair of the stztes 2.6 S there is
a positive probability of reaching & from a in finite steps. i.e. the Markov chain is irreducible,

The transition probahility p;, can he rewritten as
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n 5

[1-Prob[ D WuSi5,20] —+-Prob( D W,S.S,=0) |

=102k {= 1A=k

pi=

.‘.’&Ii—l

é%( 1——%—Pmb( f_;ﬂW*,SES,:o] ) <_i._
Hence,

pi=1— §p,—,>l——i~(n—ll=%—>0.
Thus the Markov chain is aperiodic.
The stationary distribution uniquely exists since the Markov chain is irreducible and aperiodic.
Now we prove the stationary distribution is approximately a Boltzmann-Gibbs distribution if the connections
are symmetric and the size of the network is not too small.

If the network has symmetric connections we have the following energy function
1
= LB 2w
The difference between the energy of states jand 7 is

H,“_H,=Z!$E‘,G‘LUHS§S[.

"

The sum zﬂw”SiS.u is exactly the mean of the sum of the random variables E WSiSi.
Tk 1=1.47k

For & network with a large number of units the distribution of the sum of weighted inputs to each unit ap-
proaches a Gaussian distribution. The transition probability p;, can be estimated by a cumulative Gaussian distribu-

tion function.

] n uia
p,,‘ﬁt*?l“;"( Prob(!:;#WuS,,S,<0) +%PJ“G()( 1¢§¢!W*,‘S*S,'=O) ) %;l; ‘\/lz_reix_:'dl"

where yx is the mean and ¢ is the standard deviation,

'f________m
H= ;BqugS,. O‘:A\/.,ﬁg#ﬁ(l*}gzwﬁ).

According to the result of Zhaot'®, we have
1 1

Puml FPCW =1 o0 B HD e

Similarly we can obtain

pise T e T e

eD BI.DSH,/H eD 3495H)/"' . 3
If we chocse = and 7=z where Z is the normalizing factor, the detailed balance equation
holds. Therefore the stationary distribution is approximately a Boltzmann-Gibbs distribution, O

3 Simulated Annealing

Simulated annesling in a stochastic neural network is implemented by sclecting units at rendom and updating
them according to the probzbility
1

Pii= e~ A7

where H is the energy function and 7' the temperature. By gradually lowering the T from a high initial value to a
low point with a certain cooling schedule. the energy function in the network will hopefully reach a global mini-

murm.

In a recurrent stochastic binary network, simulated annealing is controlled by the standard deviation ¢ which
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has exactly the same function as the temperature. The larger is the o, rhe larger the degree of the randomness in
the network. When o reackes its minimum 0 the network reduces to the deterministic case.
In order to implement the simulated annealing in a RSBN we use the parameter 8 to control the standard devi-

ation ¢. The inirial value of 3 is set 1o be zero. Thus the standard deviation

a=,/ > (1—Fuid=vn—1
{1\ J#k

reaches its maximum. The network becomes completely random. Then we gradually increase tae value of 8 from 0
to 1 with a certain schedule. This will decrease the randomness in the network. Hopefuily the process will mini-
mize the energy function of the network.

Simulated annealing process brings a stochastic system (o a stable state. Tt can be used in a variety of aspects
such as the Boltzmenn learning and the combinatorial optimization. The Boltzmann learning rule is usually applied
when the system reaches a stable state via a simulated annealing process. To find the optimal solution ol an opt-
mization problem we need to map its cost functior. to the energy function of the network. A simulated annealing
pracess minimizes the energy function and gives out the solution. Simulated annealing can also be used ta optimize

the gradient descent learning process'™ .
4 RSBNs and Markov Random Fields

There is a very strong relationship between the stochastic recurrent binary networks and the Markov Random
Field models. 1t was shown in Section 2 that the stationary distribution of a sequential recurrent stochastic binary
network with symmetric connections uniquely exists and it is approximarely a Boltzmann-Gibbs disiribution.
Thus, a recurrent stochasric binary network can be practically treated as a Markov Random Field. Now we consid-
or the recurrent stochastic binary network from a viewpoint of Markov Randeom Fields. This will give us some use-
ful insight into the model.

The energy function we defined in a RSBN has the following form

TN
If= -—%9/\_; Z;w,,S.S_u
iy

where 2 is the control parameter, w,; is the weight value associated with the stochastic connection Wi and S;v S
the states of neuaron 7 and J.

With the above energy function, the RSBN approximately obeys the Boltzmann-Gibbs distribution. [t is very
likely that the energy function is the limit case of the exact energy function (which still remains unknown) when
the size of the network gets large.

We have pointed out that the Markov chain associated with a sequential RSBN is irreducible and apericdic.
Therefore, the stationary distribution = (g, +gz+. - . q.) uniquely exists, where m is the number of total global

states of the network. According to the result of Markov theory, we have the following equations

%;:;,p;;=q,. for i=1.2,... . m, (3)
where p; is the transition probability from global state j 1o global state /. For a sequential RSBN, p; is non-zero
only when the states j and i are neighhours, i.e. , only one unit in the network is in the reversed state for 7 and j.
1f we denote the global state j by {8 82,550, .. 554 .. .8, and the global state ¢ by {S).8:5830. 00 s —Ske v
S.}» then

,,j,:"}r—[zﬂrof:( E WaS:S:<0) }--%Pmb: > w,,,s,,s[:o]]

=107k I=1.04k

and the probability that the network stays unchanged is
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piy=1— ‘Z; P

Obviously, it is too difficult to solve the equalious exactly since the number of the global states m is usually
very large. However, we have also shown that the detailed balance equation roughly holds for the energy function
of (2) when the sizc of the network is large. If the detailed balance equaticn holds in the real case, that is, the
unique so_ution o the Eq. (3) ¢ satisfies the equation

g.pi;=q:p; forall i and j,

then we can prove a RSBN is exactly a MRF.

Theorem 2. A scquential Recuzrent Stochastic Binary Nerwork is a Markov Random Field if the detailed bal-
ance equation helds for its stationary dis:ribution.

Proof. We denote the unit ¢ in the network as w; and its srate as S,, i =1,2,....n The conditional

probability

6, SR, .. ,5.)

L i T T U S op o Sy 7 S ORI P S T

For any v, € Q(z,), where Q{v,) is the set of neighbours of v, let a.bye.edyey f denote the global states (S,
Siver e nSa=1,...:8.05 (8,.8,00-. 38— —1,...:8.0 (5158zs-..-8:=1,. .. .8.=1,....8.0, (81:5:.....8,=
a8 =1 08 (S8 S s Sem e L s S and (58 WS T WS Em L
S.) respectivelys the conditional probability
P(S,1S,3 v and ”;”)‘QT:{ZW
If the deteiled balance equation holds, we bave
Qupos T ufras Qo= Qs Gapar=dspia

Because v, & Q (v,), and «, ¢ and d are the neighbouring states of 6, ¢ and f respectively, the transition
probabilities

P =P par=1,>0;
and

P Poe=pra=1t, >0,
Taerefore,

q.tq, 3 (L+4 /809, o
gotaetq,tyy  (+4/8)g O+ /)9, g4,

ard similarly.

G 4
g bqetatyr gt

Because of the bipolar stare of the unit, the global state (S5, S.,...,8.) is either « or &; correspondingly,
(814829000 58, =1,4....5,) is eitker ¢ or ¢, and (5,,5,,...,85=—1,...,5,) is either d or f. Hence,
P(S 8,y v;#0)=P(8|S,; v,7# v, and v, 7 v.).
Since v, was any unit not a neighbour of v;, we have that the conditional probability (8; |3, ;v;7%7:) only de-
pends on the units in Q(z,). Hence,
PSS, v, Fv) =P8 |85 v, €Qw)).
So the RSRN is & Markov Random Field. 1

5 RSBNs and Beltzmann Machines

The stochastic sigmoid neuron used in the Boltzmana Machine is governed by the update rule
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1y 1
Prob(S=1) T+e (Dom=0) 7
and

Prob(S=0) =1 Prob(§=1) = et sco
1+c( ?wluj—s) 1
where S is the state of the neuron, T72>0 is the so-called temperature.

By making the neuron behave stochastically the network is capable of escaping from the lecal minima. Taking
the zero-temperature limit will reduce the stochastic neuron to a deterministic binary version, but the finite tern-
perature extension will prove very useful, such as in the simulated annealing process where T acts as a crucial con-
trol parameter,

The main similarities of 2 RSBN and a Boltzmann machine are listed as follows,

» Neurons in both networks are stochastic and have two discrete states,

» Stochastic behavior of both networks can be controlled by certain parameters.

= The connections within the networks may be excitatory or inhibitory, i. e. the weights can be positive or
negative.

* The strength of the connection determines the degree of the influence from the input. Both networks have
adaptable connections.

» The two networks have a very similar functionality if the size of the network is large.

In addition to the above simtlarities, a number of differences can be identified between these two networks.

+ The stochastic behavior in a RSBEN comes from its connections. but in a Boltzmann machine it is generated
by the neuron according to the net contributions from the inputs.

« The temperature T in a Boltzmann machine is an abstract concept derived from a real physical system,
which is used to control the degree of randomness of a unit; but in a RSEN the values of its weights naturally de-
termine the degree of randomness.

- All the weights of a RSBN are limited in the range [—1.1]; but in 2 Boltzmann machine every weight cen
become arbitrarily large. The limitation of the weight values in a Boltzmann machine will cause a change of the
range in its output value and severely affect its learning process.

Generally speaking, the functionality of a RSEN and a Boltzmann machine appears quite different if the size of
the nerwork is small, their behavior become similar with each other when the number of the neurcn and the con-

nection increases.

6 Incremental Boltzmann Learning

The ability 1o learn i one of the most essential characteristics of intelligent behavior. It is also the most im-
portant aspect of neural networks. One useful definition of learning for recurrent stochastic networks involves
matching probabilities between the environment and the network. During the learning process we attempt to adjust
the weights w,, to give the states of the visible units a particular desired probability distribution.

We have shown that the stationary distribution of RSBNs is approximately a Boltzmann-Gibbs distribution in
the previous section. Therefore the following Doltzmann learning rule can be directly applied to RSBN which has
some remarkable features.

Aw,,— (48,8, ~— (5,80 ). 1)
The term ¢S5;5;). is essentially a Hebb term, with the visible units clamped, while the second term (5.5,)f corre-
sponds to Hebbian unlearning with the system free running. £ is the learning rate. The learning involves first

letting the system run freely. The probabilities of the states taken by each unit can be estimated. Then the visible
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units are clamped, that is, forced to take appropriate values. Again, values of the probabilities of the states of the
units are estimated. Then each local weight change is proportional to the difference in the probabilities of the units
connected by the weight. The process converges when the difference of these values becomes zero for each pair of
the units in the network.

The estimation of the correlations (S:5;) in both free running and clamped phases should be done in equilibri-
um. In the ahsence of appropriate hardware the system has to be studied by Monte Carlo simulation. Unfortunate-
ly this procedure takes a very long time to come to equilibrium at low temperature T. The solution is to use a sim-
uleted annealing procedure with & gradual lowering of the temperature from a high initial value to the desired val-
ve. This procedure is very computationally intensive.

The Boltzmann learning rule (4) does not completely determine the learning algorithm. Tt is still necessary to
decide how long to collect the statistics for the correlation estimation, and what temperature schedule to use in the
annealing procedure. A commonly encountered difficulty with Boltzmann Machine is that the weights grow too
large since there is nothing that can efiectively stop such growing. Large weights would create such high-energy
barriers that the network would not reach equilibrium in the arranged time. Once this happens, the statistics re-
quired for the estimation of correlations will not be the equilibrium statistics required. Thus the whole learning
process will be damaged.

However, all the weights in a RSBN are between —1 and 1, it overcomes a main difficulty encounter in the
general Boltzmann machine, The limitation of the weight value alsc leads to a complete distribution of the informa-
tion over the whole network. This is expected to improve the generalization performance.

The design of our RSBN is finally aimed at an efficient hardware implementation with on-chip learning. We
use a simplified incremental learning method. A brief deseription of the learning process is as follows.

(1) When there is an input pattern the system is in a clamped phase. That is, all the input and output units
are clamped to particular values; when there is no input pattern, the system is in a free-running phase.

(2) Begin a simulated annealing process in which the randomness is controlled hy the parameter . Set fto 0,
then gradually increase the value of 3 from 0 to 1 with a certain schedule. At the end of simulated annealing pro-
cess, collect the states of all neurons and estimate the correlations {5.5;) between each pair of the neurons.

(3) During the clamped phase, we add a small term € * (5.8;) to the weight w,; associated with the random
connection Wi,

{4) During the free-running phase, we subtract a small term ¢ * (§.8,) from w,,.

(5) Alternatively set the system to the clamped phase and the free-running phase, repeat steps (1)~ (4) until
the stop criterion is reached.

The efficiency of such incremental learning can be explained by the energy distribution over the whole configu-
ration space. In the clamped phase, each learning step decreases the energy corresponding to the particular learning
pattern, and this decrease is always the greatest among all the changes of the energy for other parterns. Since the
probability corresponding to the particular pattern is exponentially proportional to the minus energy, this pattern
gets more chence to appear in futurc. During the free-running phase, the learning is simply a de-correlation pro-
cess. This is helpful for continuous learning and may increase the number of the patterns stored in the network. It

is ohvious :hat the incremental learning is entirely local and appropriate for on-chip implementation in hardware.
7 Human Face Recognilion

There is increased interest in biometrics for reliable personal identification, The computerized access control
has a wide variety of applications. Human face recognition has the benefit of being a passive, non intrusive system

for verifying personal identity. Many researchers treat the face recognition as a high-level task with many stages of
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processing. However, some evidence which show the face recognition process may also based on a low-level image
processing. Physiological experiments in monkey cortex reveal there are isolated neurons responding selectively to
faces'™’. Artificial neural network is believed to have certain basic features of the human brain. It may deal sensibly
with the face recognition problem which is still very badly defined. Qur ultimate aim is to develop a novel and uni-
fied neural computing framework for face recognition.

We first apply our recurrent stochastic binary network to a static face recognition problem to test its learning
and generalizing ability. Then the model is used to learn and recognize faces from a video data stream.
7.1 Static face recognition

The image database we used for static face recognition was a part of the FERET database at the MIT Media
Lab. There are 200 frontal human images of 100 distinct subjects. Each image is in the size of 128X 192 pixels and
with 256 grey scales. 100 images taken from different individuals are used as learning samples and the other 100
are test samples which are the images of the individuals appeared in the learning samples with some variations in
expressions (smiling/non-smiling, open/closed eyes), appearances (hairstyle, glass/no glass), illumination and

poses. All of the test images are contaminated with 5% uniform noise. Typical image samples are shown in Fig. 1.

Fig. 1 Some learning samples (top) and test samples (bottom)

The recurrent stochastic binary network has a structure of 54 72 input neurons, 15 hidden neurons and 7
output neurons. The network is fully connected except the weights between input neurons. It can distinguish
27=128 different patterns in total but only 100 of them are used in this experiment. The network is trained with
the incremental learning algorithm and the simulated annealing technique proposed in the previous sections. Each
learning pattern is normalized before it is used as the inputs of the network. That is, the size of the image is re-
duced to 51X 72 pixels, all the input grey scales between 0 and 255 are mapped into the range [—1,1].

The network successfully learned all the 100 input images after 12376 learning cycles. The learning rate is
0.003. The result shows the trained network is able to recognize 91 percent of the test images.

7.2 Dynamic face recognition

We are primarily interested in the case of identifying particular people in real-time. There are a small group of
people need to be recognized but for each one it allows varying facial detail, expression, pose, rotation, illumina-
tion ete. Multiple images per person are available for training and real-time recognition is required. The face image
is directly obtained from a video source.

A preliminary system has been developed with Windows 2000 platform SDK. All programmes are written in

Visual C+ + 6. 0. The system is a combination of three main parts—— face detection, face tracking, and face
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recognition. There are many elaborate methods for face detection and face tracking®*'*). Most of them are far too
computationally expensive. We need a system which is able to detect and track objects in the presence of noise,
other faces and hand movements. Moreover, it must run fast and efficiently so that the performance can be carried
out in real time (30 frames per second). The face detector firstly checks the moving objects in the video scene and
then finds out the flesh color distribution. The largest moving area with flesh color will be used as the candidate
for tracking at the beginning. The face tracker continuously calculates the mean and the area of the flesh color dis-
tribution and always shifts the center of the tracking window to the mean location of the distribution!’®'"), The size
of the tracking window is scaled according to the area of the flesh color. The system works as follows .

(1) Find out the moving objects in the video scene according to the difference between the successive video
frames.

(2) Check whether there exists an moving object with flesh color. If there are more than one such object,
choose the largest one as the tracking candidate.

(3) If the user would like to track and recognize a non-facial moving object or there are no moving objects with
flesh color in the video scene, set the tracking target manually.

(4) If the neural network is well trained, take the current tracking candidate as the input of the network,
check whether the candidate is a face. Otherwise, skip step 4.

(5) Calculate the flesh color distribution including the mean and the size.

(6) Rescale the tracking window size and track the object with mean shift algorithm.

(7) Take the image within the tracking widow as the input, start enrollment or learning or recognition.

The user interface of the system is shown in Fig. 2. The top frame in the window is used to show the enrolled
people. The video image is shown in the left frame of size 640X 400. The frame at the right side is for the informa-
tion exchange between the user and the system. A user should first enroll itself before using the recognition sys-

tem. The user’s name and a face snap are stored into the database.

i gy
S DER T X e R e RT P
88
frwms
i i
tor
has iy
ane
Chesth
angdh
et B
haojy
RE5 gy ke
a1
w0
B ithran M (e 311y
it iralfip n :'n:;‘r:-;-.
L Ly 37 e s . i | i i
Wl @O e e Aroom

Fig. 2 The user interface of the recognition system
The face image in the tracking window (the white frame) is normalized and changed into grey scales before it
is inputted into the neural network. The size of the image is rescaled to 60X 80. The brightest point in the image

is set to +1 and the darkest set to — 1. All the other points are linearly mapped into the range [—1,1]. The

© PEEREBAAEEISUR  hip:/ www. jos. org. cn



1138 Journal of Software #HAEFH 2001,12(8)

recurrent neural nctwork contains 4 800 input units, 20 hidden units and 7 ourput units. It has 4827 neurgns and
129851 connections in total. The network is fully connected except the input neurons. Each neuron has no connec-
tion to itself. The learning rare is 0. 002 in this experimenr.

The supervised tearning process is as fallows. The user should first set the learning targetr by clicking the cor-
tesponding name in the neme list. Then start learning while the target is correctly tracked. The system takes the
face image in the tracking windaw, normalizes and rescales the image. and uses it as the inputs of the neurzl net-
work. If the network gives out the wrong output, calls an incremental Boltzmann process s if the osiput of the net-
work is right, skip the current tearning eycle and begin the next cycle. The supervised learning process is stopped
either by the user ar by a stopping criterion - for a certain uumber of (e consecutive facial images the network
gives the right answers,

TrueFace is a competitive face recognition preduct developed by the ¢True company. It is featured with fast
face recognition. good aceuracy and accommadating to the variations of 1he face image. Compared to this commer-
cial product, our system has some unique features;

(1) "The recognition process in both systems is carried out in real time. Face detection in TrueFace makes use
of the location of the flesh color and eyes. Tt is usuzlly dilficult o enroll for a user wesring glasses. This problem
doesn’™ exist in our system.

{2) TrueFace only records four face snaps from each user. It is only able to recognize the user in few poses.
The leasning mechanvism in our systein, which learns from a sequence of face images, is more powerfui, COhur sys-
tem is able to recognize a face with wider variations.

(3) TrucFace only works with a facial image. Our system is developed to recognize not only & haman face but

alse a moving object with a uniform color distribution.
8 Conclusions

A novel modet called the recurrent srochastic binary nciwork has been proposed in this paper. Tt has been
proved that the stationary distribution of the network is approximately a Boltzmann-Ciibbs distribution if the size of
the nerwork is not oo small. A very strong relationship between the sequential recurrent stochastic binary net-
work aned the Markov random lield has been revealed. The simulation results on human face recognitior. demon-

strire the power of the model.
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