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Abstract : A multiobjective optimization using genetic algorithm based on ecological cooperaticn (ECGA) is
proposed in this paper after analyzing the present studies. In the algorithm, an ceolegical population density com-
petition equation is used for reference to describe the relation between multiple objectives and to direct the adjust-
ment over the relation at individual and population levels. Simulation experiments prove that the algorithm has a
better performance in finding the Parelo sulutions,
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The solution of a real problem involved in multichjective optimization (MQ) must satsfy all optimization ob-
jectives simultaneously . and in general rhe solution is a set of indeterminacy points. The task of MO is to estimate
the distribution of this solution set, then to find the satisfying solutiona in it, (1]

Many methods of solving MO have been proposed in the literature. These methods generally can be classified
into two categories. (1) Traditional methods . including program-plannirg, pre-weighted and restraint increasing.
The basic idea of these methods is converting multiple objecrives into a single overall ohjective in one step or mere.,
then computing and adjusting the ratio of each nhiective in the overall ohjective, until achieving the satisfactory so-
lutions. However, in real problem these objectives cannot be combined into a single function because they are in-
entmmensurahle. (1) Multiobjective optimization using genetic algorithm. Since the study of VEGAIY by Schaffer.
several methods have been proposed for solving MO by GA. 8o far, the most successful approach to MO by GA
seems to be based vn Pareto renking. ") The Parero-based ranking is a method of evaluating the individual by its
degree of Pareto optimality in the current population and implements some cooperation of different objectives’ indi-
viduals. While the Pareto-based ranking makes it pessible to find Pareto optimal solutions by GA, a good sampling
of the solutions from the Pareto optimal set is not guaranteed only by this technique. ! That is, the populaticn

converges to small number of solutions due to the random genetic drift. To avoid this phenomenon, some work ex-
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ploited niche techniguel® 1.

In this paper, the authors propose a novel methad based on ecological cooperation for solving MO, To adjust
automatically the relation of muliple obiectives at individual and population levels, an explicit mathematic model
should be exploited for guidance. Using ecological population density competition equation for reference, we de
scribe the complicated, nonlinear relation of multiple obicetives and adjust the relation at individual and population

level simultaneously.
1 Definition of Multiobjective Optimization

The multiobjeetive optimization problem (MOP) is formulzted as follows™

minf () folade. oo Sulad
rEF

where J1(z) s [34z) s, «. o Su(x) ere the objeciive funcricns to be minimized simultuneously » « is the decision vari-
able and F is the feasible region. In this paper. we discass no restraint MOP.

Definition 1. A point z={x|+i35. .. »2,) is said to dominate another point y= (y1syys. .. s 320 if ¥ 70y and
3 io/xie Vi

Definition 2. Given two feasible solutions x and y, if ¥ m=1.2.... » M,/ )</ (s) and D m | f(a¥<lfa
(), we say that r dominates y.

Delinition 3. If a feasible solution z* is not dominated by ¥ + € F, we call 2" a Pareta aptimal solotien.

= is a rational solution of MO. In practice a solution usually comprises large components and small compo-
nents. so there is no rational optimal solution. We also call the set consisting of all the Pareto optimal solutions
the Pareto optimality ser. The first goal of solving M(} is to obtain the Paretu optimalily set, or to sample sclu-

tions from it.
2 Ecological Model for Multiobjective Optimization

In collaborative evolution individnals® seli-status, living environment and competition with other individuals
affect individuals® self-svolution. It's similer to the evolution from the point of view of ecology. Theoretical ecolo-
gy has gone into it. Population in certain living environment is affected not only by itself’s fitness but also the liv-
ing environment and the collaborative competition with other populations. The last two fsctors can be implemented
by population density a1 population level.

Lotka-Volterra competition equation zs the thecretical model of population competition is introduced to de-
scribe populations’ cooperation. based on which we proposed a collaborative evolutionary algorithm for M() in next
section.

Given two pepulations N, Na. the cooperation between them can be formulated as follows,

aN, K\ —Ni—a N,

el b sy i
ANa o (KamNi—auh, | .
O Ey @

where K,,K, are the living environment lcads of populations N,, N, without vompetition to each other: 7y, rp are
individual’s maximum increasing rates. a:,.a. are competition coefficients. a,, represents the suppression effect of
tndividuals of pupulation N, from the individusls of population N, ™

This model based on population density completely describes the main collaborative relations. Examining Eqg.
(1) and Eq. {&), an individual in pcpulation N, hes a suppression cffect on the increasing of itselt’s population, and
the suppression effect’s value is 1/K . Population N, is the same as population N\, but the value is 1/K;. Popula-

tion N, has the suppression effect on individuals of populetion N,, and the suppression effect’s value is a: /K.
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Symmetrically, there is & value of @:;/K;. The collaborative results rest on the relations of K, K, .a;, and as,.

In Eq. (1) and Eq. (2), let N /dt=0,dN,/dt="0, then we can draw rhe isolines ol vvery populativn. The
area under isoline is the population density increasing area, and the upper is decreasing arca, as shown in Fig. 1.

(1) When Kp/a,<K,.K,/a;>>K;, isoline of population N, lies in the top of isoline of popualation N,. Popu-
laticn N, always wins. Stable balance is reached when N. =X, and N,=0 (Fig. 1(a)J.

(2) When Kp/ay > K. K, /a,,<{K,. iscline of population N lie in the 1op of isoline of population N,. Popu-
lation .V, will always win. Stable balance is reached when Ny=K; and N, =0 (Fig. 1(h}).

€23 When Ky/a, <K, K /a»< K;. anyone of populations N, ¥, could win. and suppress the npponent.
There exist three balances, The balance at cross point is not etable, and the conditions of stable balance is &, =K,
and Ny—0 0 Ny—K; and Np=0. The winner depends on the ratio of the two pepulations® initial quantities (Fig.
Hedd.

©4) When K, /an>K,+ K, /42> K. these two pepulations cannot suppress the opponent, and there is only
one balance point {cross point). The two populations ¢an coexist in certain population density and under its living

environment’s loads.

M

ta} (dy

Fig. | Isolines of tweo collaborative populations

In a commnnity comprising » different populations s competition cquation can be formulated as follows .

K N—{ SaN,
4N, . ‘{ V2% r) 1)

P -

It’s the rooperation model based on ceclogical population densitv. We could expleit this model to deseribe the
relation of multiple objectives. Because the relation of multiple abiectives is just collaborative coexistence, and it fi-
nally is stable, two restraints must be followed :

(1) The cooperation is based on population dens:ty, and all obiectives must be converted into corresponding
population density (or population seale). In this paper, il the scale of population N, is increasing s the correspond-
ing objective f, will increase its ratio in the overall abiective. which is defined as; 7, =aN,, where ais a ratio con-
stant, f; is the average fitness of this populaticn corresponding ta the ith chjective.

(2} Expiicttly specify the vaiuegs of K;.K; ., and a, 10 guarantee that therc is on'y collaborative coexistence a-
mong multiple objectives, Tlal is, given two populatiens, the problem K, /22K, Ko/an ™K, must be satisfied.
To resolve it, we decompose it in1e two sub-problems.,

{1 aj; and a;; must be less than 1if K;=K,;

W) a), <K /K<l a,if KK,
3  An MO Algorithm Based on Heological Covperation (ECGA)

Exploiting Ea. (33, we proposed an MO elgorithm based on ecological cooperation. Fig. 2 shows the algarithm
(ECGA). The basic idea aof FCGA is as follows,
(1> each objective corresponds 1o a population,

(1) in one iterative step, evolution process and cooperation precess must be executed. The evolusionary pro-
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Objetive 1 Objective 2 e Chjective IV
— = — :
[Determins scale of population] Determine scale of population | [ Deterrine scale of population |
—_— [y

i
[ Computing seales of populagons |

No T T Yes

— . .. Tm—_
—__ Terminate condiions T o[ End ]
S o ——

Fg. 2 Multiobjective optirmization atgorithm besed on ecological cooperation

cess adopts GA’s genetic operations, while the cooperation process adopts Eq. (3] to compute population density
and to adjust the scales of populations. The scale of population is {ormulated as

N, Gt+1)=N, ft)+%

(1} If the increasing of population N.is positive, randomly generated dN,/d¢ individuals join population N, for
enlarging the scale of M.
(23 If the increasing o population N, is negative s according ro the fitness of population N, dN,/dr individuals
with minimal fitness ave deleted. The scale of population is reduced.
As a complete unit, ECGA pseudocode description is given here.
Step 1. for all objective functions fi{x)
Initialize & random population N, corresponding to f.(x)
Step 2. while (terminative condition is NOT satis{ied)
for all populations &,
Genera! genetic operations are performed
Computing 4N,/dt using Eqg. (3)
Determine next generstion’s scale of population N, using equation .
N:G+1D=N,)+dN,/de
end for
end while
Examining the adjusting strategi:es. the randomly generated individuals enlarge the scale of population (popu-
lation density ), which maintains the diveraity of populalion and to a certain extent improves the global distribution
of feasible solutions in the whole solution space. One or more individuals that have minimal fitness will be deleted.
[t"s in agreement with natural selection doctrine, and will improve the fitness of this  sopulation in next itzrative
step, So this pepnlation could held more campetitinn strength, and its eorresponding objective will obrtain Jarger
ratio in the overall objective, And the MO problem will achieve satisfying salutions. The algorithm (ECGA) using
above iterative adjustment makes every populetion collaborative evolation.
In ECGA . not only multiple nhjectives’ cnoperation is realized, evolutionary individuals' gelf-suppress eocper-

ation in a single objective is also realized. Eq. (1) and Eq, (2} can be rewritten as:

le_ _rli\j%A‘rlNialiNZ
Z TR X,
dN, N N n NNy
P X,

where the first item on the right side represents population increasing without denstty restraints. The Znd anc 3rd
items respectively represent setf-restrain in population and collaborative competition between populations.
In addition, we discuss the associative performance parameters: K;.r;. and a;,. K, is the environment load that

depends oa the given objective, The value of r, is Lncarly decreasing along with the decreasing of N, when N;=K;
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and r;is 0. So let r,=(K,—N.)/k;, where k; is a coefficient. As a result, the optimal performance will lies on a;.
Certainly the restraints (2) mentioned in last section should be satisfied. In Fig. 1{d). if restraints (2) is satisfied .

the values of K, 7,4 a; and aj; will determine the CONVergence area of ECGA.
4 Experiment

We tested the performance of ECGA on three problems of different cifficulties, and compared it with the
niched Pareto GA (nPGA). The objective functions that define sach one of these problems are listed in Table k. In
Tahle 2, the values of parameters for nPGA and ECGA are the same, so that it is ezsy to compare.

Table 1  Three MO problems

Problem Objectives Ranges

Minfi(x)=x* R
. ) € —46,5]
Minfa(x)=(x—12)2
minf1(x,y)=1/(x?+324+ 12
Ty

z ye[—3,3]
minfpir,p)e= i+ 3y241
1.3

min S (r.y)=x+3+1
Ty

3 ) yE[—3,3]
minfalr, yy= (" +2y% -1
L)

Table 2 The values of parameters

Chromosome length Population scale Crossover prebabi.ity Muzation probability

nPGA 14 30 0.033 0. RS

Problem 1
ECGA 14 30 0.033 ©. 085
Probl ; nPGA 40 50 0. 033 (VA
ORI S TTRCGA 10 5 0.033 0.7¢
nPGA 44 50 0.033 0. 85

Problem 3
ECGA 20 B 0.033 0. 85

Problem 1 is fairly simple where there is only one variable x. In Fig. 3, visited space and final populaticn are
shown sceording to different algorithms. Notice that some individual of final population of nPGA is far away from

the Parets optimal set, This contrasts with our ECGA in which all individuals lie close ta the Parete optimal set.

n - n
&0 ]
ke -1}
M N
L] Vistted rpace . (% Vidited space
@ Final population + L ) Final population 1
0 ']
e . ' 20
1 i 10
S S
-5 [ s o 5 20 ] 30 EEP = ) x 10 1% 0 P = 55 a4
f1 11
{1> nPGA (2 ECGA

Fig. 3 Visited space and final population of problem 1
Praoblem 2 is slightly more difficult than problem 1. It has two variables, z and y, and in the objective func-
tion plane. the set of valid points is an area. Fig. 4 shows visited space and final population of the nPGA and our

ECGA. Notice that the final population of cur ECGA is more uniform.
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Finally, problem 3 is more diffiecult than problems 1 amd 2, the valid region of the objective functinn plane is

larger, and a more complex relation exists between the independent variables, r and v, and functions f, and 7,.

Fig. 5 shows the visited space and the final population of the nPCA and cur ECGA. There is a noticezble difference

in performance between algorithms, Our ECGA visits almost one tench of the space as nPGA does, but the final

population of the ECGA achieves Pareto eptimal set uniformly, whereas the aPGA appears to visit all the search

spaces with a dissans{ying result.

o [
[¢]
= Visited spacs .
Final popnistion
$ ) 57 a 1 4 &

(13 uPGA

10
<
AT
1§
o v
5
= \ Vidted space -
" Finsd papulation »
£ 4 3 o 2 4 &
|
(2) ECGA

Fig.5 Visited space znd final population of problem 3

In conclusions our ECGA searches smaller visited space and fewer points not belonging to Pareto optimal set

are included by fina) population when we sclve the three MO problems. It seems that the rRPGA has visited the

whole search space without a stronger concentration near the Pareto optimal sct, and its final population contains

many dominated points.

In Fig. §, the rativ of non dominated individuals in final populations is cotupsred among the theee problems.

Fig. 6 (1) shows the fraction of nan-deminared individuals in the population of nPGA does not have stable behav-

for. As the problem difficuity increases, the value of the plot is reduced. indicating that the algorithm delivers a
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solution of decreasing quality as the difficulty of the problem grows. In our ECGA the plot 1» an almest monotoni-
cally increasing curve. As the problem difficulty increases, the fraction of non-domtnated individuals rakes more e-
wsluations (o reach the value of 1.0, but once it reaches this value it stays very clese to it This behavior indicates

thar the Paretc optimal solutions of cur ECGA have stronger concentration ability (Fig. 6€2)).
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Fig. & The rato of non-dominated individuais in population

5 Ceonclusion

The interest in multiobjective optimization lies in that most real problems involve more than one optimization
objective. The bottle-neck uf MO is to describe the complex relations of multiple obiectives. Tn this paper, we pro-
posed an MO algorithm (ECGA) based on ecological cooperetions using dynamical equation of popula-ion competi-
tian at eca2logy to describe the complex., nenlinear relations of multiple cbiectives and to adjnst rhe relation on indi-
vidual and population levels simultaneously. The advantages of our ECGA ure guaranteeing the uniform distribu-

tion of solutiona and s:rengthening the conzentration ability of solutions.
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