1000-9825 /2001 /12€04)0493-06 ©2001 Journal of Sofrware % # % I¥ Vol. 12, No. 4

Formal Specification for Evolution of Algorithm and
Its Properties’

LUAN Shang-min', LI Wei®

Y(Institute of Software, The Chinese Academy of Sciences. Beijing 100080, China):

!(Department of Computer Science and Technology, Beijing University of Aeronzutics and Astronautics,
Beijing 100083, China)

E-mail: lsm@rnail. imd. cims. edu. cn

Received March 29, 1999; accepted April 24, 2000

Abstract; The inductive process is used to speci{y the evolution of algorithm in this paper. The relationship
hetween a s¢t of sentences of first-order language and an algorithm is established and inductive rules for heuris-
tics are presented. A probabilistic approach to algorithm analysis is also presented. This approach provides a tool
for desizn of efficient algorithm and automartic algorithm design.

Key words: evolution of algorithm ; inductive inference; limit

Algorithms play important role in computer science end artifivial intelligence. Many problems are NP-com-
plete, i. e. polynomial algorithms for these problems are not available till now. Researchers have designed many
heuristics for them. The more efficient they are, the betier they are. If a heuristic for a problem does not meet our
needs, we will modify it or design a new heuristic to meet our needs, The above process iterates until the heuristie
satisfies the given cenditions. This can be described by 4 sequence of versions of algorithms as follows:

Alsdgses s Anse .
where, version sy, is obtained from L. This scquence is ezlled the sequence of evolution of algorthms.

In order :o describe and implement the above process, two problems need 10 be considered. Firsc, we should
cansider how to describe the process of the evolution of algorithms. Second, we should present an operaticnal ap
proach to implement the automatic medification of algorithm, In this paper. we focus on describing the process of
evolution of algorithms.

Smitht % showed that the functional specification of an algorithm could be given by algebraic specification,
i.e. the function of an algorithm and domazin knowledge can be described by the sentences of first-order language.,
so that an zlgorithm is equivalent ta a set of sentences of first-order language. For a set of sentences of first-order
language , we can design an algorithm for it. And for an algorithu, we ean give a sec ol sentences of first-order
language for the algorithm. Tn this paper. we use a set of sentences of first-order language instead of an algorithm.

called abstract algorithm. The sequence

« I'his project is supported by the National Natural Science Fouadation of China under Grant No. 19992895 (E R A #i% #4
4. LUAN Shapg-min was born in 1958. He received his Ph.). degree in computer science from Beijing University of Aeronautics
and Astronautics in 1899, MNow he works as a postdocior ai the Institute o} Software, the Chinese Academy of Stiences. His re-
search interests include automatic algerithm design, belief revision, formal specification and human-computer interaction. LI Wei
was born in 1943. He is z professor of the Department of Computer Science at Beijing University of Acronautics and Astronautics.
Ard he is an academician of the Chinese Academy of Sciences. His research interests include concurrent programming languages .

operaticnal sematics, type theories, and logical foundation of artificial intelligence.

© HEFRES AT http:/ www. jos. org. cn

4534 Jewrnal of Software $HAHE4R 2001,12(4)

YT CTTIY AOR
is called a sequence of abstract algorithms. The inductive process'™ can be used to describe the process of evolution
of algorithuns if we give che inductive rules for algorithms, so that we give the inductive rules for heuristics in Sec-
tion 1.
The heuristics are applied to test cases after they are designed. The comparison between performances of
heuristics depends on the experimental dita. And the theoretical approach to heuristic snalysis has not been dis-
cussed until now. ln order to solve this problem, we will present a probabilistic approach to heuristic analysis in

Section 2. This approach will be illustrated by vertex-cover problem.
1 Inductive Rules for Heuristics

The inductive rules fur heuristics will be given in this secrion.
Definition 1 (problem space}. The set of all instances of 2 prohlem is called prohlem space, denoted by 7. A
nonempty subset of T is called subspace. d.dy+dys. .. +d,s. .. are used to denote subspaces.

Definition 2 (partition). Let T be a problem space and dy4;4.. - 2dar-.. be subspaces. If T'= Gd., d)s
1

iy sdyy. . . is called a partition of problem space T. D is used to denote the partition af problem space, i.e. D
={dyusdys. .. v .. }.

A problem space is partitiored into subspaces in order to analvee the heuristics, This will be discussed in Scc-
tion 2,

F denotes the set of heuristics, and f. . fy....+f,. are used to denote heuristics. Qur first aim is to find
the moat cificient heuristic among all the heuristics, We need to define the following predicates in order 10 give in-
ductive rules.

1. Better(f),)+ it means that the perflormance of heuristic f, is berter than the performance of heuristic fo.

2. Best(f): it meons that the performance of heuristic £ is the best among all the current henristics.

3. Swccess(f2d): it means that the heuristic [is zcceptable when it is applied to test cases in subspace 4.

4. Win(f.t), it means that heuristic f is acceptable when it is applied to test cases 2.

The following inductive ruleg for heuristics are given to meet our first aim.

Better (f, fO&Th(T) f,FEF
P=Better{f\,f2) I
- Better (f\ fO&TH £, 1, CF
P=_ Better (. f2) I
Best (f)) & Th(I") fiEcF
I'=>Best(f) NY fq U =F)—Better (f, £33 T

~Best (V& T fEF
P=_Best(f) T

Swecess (f,d)&TH(IM feF, deD
P=Success (f,d) I

—Success(f)& Th(IM) fEFdED
I=_Success(f,d} I

Wind £)& Th{l) fEF 1T
F=>Win(fa) T

Win(f,) & Th(I) FEF (€T
P _Win(f,y I'

Best (JOEThIY f1,. HLEF
Better (f,,f1) T=>Retter (f,. 1)) Best(f,) _Best(J|) T~ {Best(f|)}

© rhlERE

SRS hitpy/ www. jos. org. cn

EaM F OREROOBARYRABA 495

In order 1o obtain a more efficient heuristic, we usually combine the current heuristic with ancther heuristic to
form a new heuristic strategy called comhined strategy. In general. the above process is described below. We first
design a heuristic for an NP-comple(e problem. If the heuristic does not work efficiently, we will combine another
heuristie with the current heuristic, and obtain a new heuristiz. 1 the new heuristie is more efficient than the pre
vious one, we will use the new heuristic, or we still use the previous one. This process iterates until a heuristic
which meets our needs is obtained. Qur second sim is to identify which strategy can raise the efficiency of the algo-
rithm for a problem. We first give several prodicates which will be used in the remainder of this section, before we
give the inductive rules to meet the aim.

1. add(f?). it means that the current heuristic is combined with another heuristic and a new heuristic is ob-
taincd,

2. accelerate (F); it mezns that the heuristic obtained by combining the current heuristic with heuristic f is
more efficient than the current cne,

3. speedup{f.1): 1t means that the heuristic obtained by combining the current heuristie with heuristic f 1s
more efficient than previous one when they are used to find the sclution of instance 1.

4, quicken(f) it means that if the current heuristic is combined with heuristic fand a ncw heuristie is ob-
tained . the efficiency of the new heuristic is better than that of the current heuristic when it is applied to test cases
in subspace 4.

The following induciive rules are given to mest our second aim.

FEF add(N&ThM
T'=>add () accelerate (/) T

JEF arcelerate (/Y& Th(I)
I'=accelerate([} T

fEF qaccelerate ()& Thil™)
> accelerate () T

FEFRtET speedup (f1& Th(M
I=speedup (/D T

FEF T speedup{)& Th{™
M= _speedup(/3 T

FfCFdC D quicken{f dy & Th(I™)
T=guicken(f > I

FEF de D quicken(f,d) & Th(I
I'=_quicken([,d) I"

We will discuss how to give a complete instance seyuence [or the second case. Suppose the hewristic [is applied 10
test cases in suhspaces a4, adlia ey and suppose n, instances in subepace d, are tested. Than the complete in
stance sequence s given as {ollows,

add(f.] ’
speedup(Siat,,) [or mspeedup(fint, 3]s
Speedup(f! ,t‘,”) i:or ﬂspeedup(f, :f,m)],

a1

speedup(foot,) Lot —speedup(five, V], quicken(f:.d,) Lor mquicken(jid;],
L1y e : !

speedupl fi.1;, 0 Lor —speecup € fiat;, 21+ speedup(firt,) [or ~speedup fist;, 1o s

Fg1 J2z

speedupl f, ,:3-2"2) Lot —speedup(fist,, I+ quicken(f. d;) (or —quicken(f. ,d,‘)] A

‘2n2

FBCERAEIFATET http:/ www. jos. org. cn

196 Towral of Software AHFIE 2001,12(4)

speedup (fist;,) [or mspeedup(fis2,,)]s speedup(fiity,,) Lor mspeedup(fiut;) se..
speedup (f 1y,) [or —speedup (f; ,1.“.25‘ Y1, quicken(f, dy) [or ﬂqzticken(ﬂ_dil)] s

accelerate (f,) [or maccelerate (f,)).
Fuor heuristics, they are put in the following order: fisfis...+Fus. ... At last, the heuristics which raise the
etficiency of the algorithm for a problem remain, all the ather heuristics are deicted. Similarly, we can give the

complete instance sequence for the first case,

2 A Probabilistic Approach to Algorithm Analysis

In rhis section, we illustrate how to partition a problem space into subspaces by vertex-cover problem, give a
probabilistic approach te algorithm analysis, and discuss how to compare the performances of heuristics within
subspace and space.

Vertex-cover problem: Given a graph G={V,E>, a vertex-cover of G is a subset V' of V such that at lcast one
of w and vis in V' for each edge (u,v) of G. Question: Loes G have a vertex-cover V', such that the size of V' is
not mere than positive integer £7 This problem is NP-completel?,

The problem space of vertex-cover problem can be partitioned as follows . graphs with the same average de-
gree of connectivity are grouped into a subspace. "This is similar to that given in Ref. [5]. The difference between
our approach and that in Ref. [5] is given below. The approach given in Ref. [5] first partitions the space into sub-
spaces. And the set T of subspaces muet be a finite set. Then it partitions cach subspace into subdomains, We par-
tition the space into subspaces. A subspace is not partitioned into subdormains and the set T of subspaces is a infi-
nite set.

If we partition the problem space as mentioned before, each subspace is an infinite set, and the partition D is
also an infinite set,

P,u(fied,), the probability of win by f; within subspace d.,, s defined as the prohability that true mean of f;
is bettar than the true mean of each f,in F. If f:is applicd to test cases in subspace .+ we have

o . . s
Pw:'n(fi!dm)=; LPr(;i,-“>,uj-" P2 AN

ls| —15%
where z' 07 \n7 , p7 are the sample mean, sample standard deviation, the number of tests, and true mean of £, in
subspace d, respectively. (5| is the nwnber of henristics under consideratior.
Suppose that performance values of f are normally distributed , true variance sf of £ is known , and heuristies

In a subspace are independent. We also suppose that the sample mean f of heuristics f; has N (0t /n,) distribu-

tien, then g - g, has N(;,c.*,u,;ai"z,/n,--Fo‘_,"z/nJ) distribution. Z=((g— g, — (,Lt,-—,t.tj))/‘\/af‘ﬁ/n,--"Oj‘z/'nj has N
(0,1) distribution.
By the above hypothesis,

Prip = pi7 |50 & onl s i % om?) = B —) /N & om0)
where @(z) is the cumulative distribution function for the N(0,1) distribution.
Because each subspece is an infinite set, so that we can not know the true mean of a heuristic in a subspace.
By the law of large number, the sample standard mean x and sample standard variance ¢* can be used in place of
true mean g and true variance 4%, respectively. We have
—_—
Pl | 26 ol i o =BG —) N 6 07)

Success(firdn) is true if Pu(fisd,) is more than a given value, or it is false.

© HEFRES AT http:/ www. jos. org. cn

3 S F A LR Y

o
o
-1

We can not apply heuristic / in each subspace o in £, because the partition D is an infinitc set. We can only
apply heuristic f in the subspaces in a finite set I, which is & subset of partition . P_.{f.1) is defined as fol
lows.

D Pl frd)

P (fiD)= ﬂm‘;“——“
For two heuristies f; and f, i35, Beter (f,,F;) is true il I, (kD) is more than P, (B D3) or Better(fi.f;) is
false,

We can also partition the problem space es follows: graphs with the same size of V are grouped into a sub-
space. Let 4, consist of the graphs whose size of vertex is n.

If the problem space is partitioned as mentioned before, we can give a probabilistic approach to algorithm anal-
ysis. Let x be the time that heuristic f spends in finding a salution far an instance. According to eur knowledge, x
has normal distribution, i. . = has N(g.a%) distribution, where g i the true mean of tire that heuristic f spends
in finding the solutions for instances 11 subspace d, o*is the trus variance of £ in subspace d.

Let g(i) be a function parameterized by ¢, and i is the size of the preblem. For vertex-caver problemn, i is the

size of V. Ler f be a heuristic and 4, 2e a subspace, [7.,(/,d:) is cefined below s
faenl

o 1 —wep? g () —p
P frd)=Priz<lgU)y=])__ e L0 =g gL £
h/?”g ® (T J

Similarly . the subspace & may he an infinite sct or the size of d is huge such that we can not apply a heuristic o
test all the cases in d. Bur, by the law of large number. the sample standard mean s and sample standard variance

& can be used in place of true mean g and true variance o, respectively. We have
S
Pl f)= Priz<g)y — o BV]

Let I, be a finite nonempty subset of). We apply heuristic f to test cases in each subspace in f,. P.(f.I,)is

defined below.

D Punlfod)

: _ @,
P [f;ﬂ,)f—m}-]——

Heuristic f is also avveptable if Po.</\ I,) of fis closc to the maximal P ..
3 Conclusion

We use inductive process™ 1o specify the evelution of algorithms in this paper. By the relationship berween a
set of sentences of first-order language and en algorithm, an algorithm cotresponds 10 a set of sentences of first or-
der languege, and & set of sentences of first-order language corresponds to an algorithm, Inductive rules for heuris-
tics and a probabilistic appreach w algorithm analysis are presented. All these are illustrated by vertex-cover prob-
lem. This approach provides a tool for design of efficient algorithm and automatic algorithm design, We will give

an operational approach to the modification of elgorithm in a later paper.

References ;

(1] Smith, D.R. Toward a Classificazion Approach to Destgn. LNCS 1101, Springer-Verlag, 1996. 62~84.

{21 Peter, P, Smith, D.R. A high-level derivation of global search elgorithms (with constraine propagation). Science of Com
puter Programming, 1997,28,247~-271.

[3] Li, W. Inductive process; a logical framework for industive inference. Science in China, Series A, 1995, 38(Supp.), 12~
27.

© HIEERES AT hip:/ www. jos. org. cn

498 Jowrnal of Software M AR 2000,12(4)

[4] Christes, H. Papadimitriou. Uomputational Complexity. Addison Wesley, San Diego, 1994,
[5] Wah, B.W., Arthur, I. W., et al. Genetic-based learning of new heuristics. rational scheduling of experiment. [EER
Trarsactions on Knowledge and Data Engineering, 1995,7(5).763-~785.

HERUEOEABARHER
pud', 2 17

W EA SR SEREN,.ILE 1000800 ;
HILERERMARE TEIHEEESTE R, L 100083)

WE. FARHERAFLIFORLC LT ST 80PN ENLRA FRETELAAMNBANI. BRY
THEGHEWMPIF R Tk AHAFZ AT RN madth oy NRETRH#T IR,

A kil mEE R

FEEGES: TP ZEMITIR: A

PAFIFFHT hitp:// waew. jos. org. cn

