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Ahstract . Branch-and-Bound (B&B) is a problem-solving technique which is widely used for various prob-
lems encountered in operations research and combinatorial mathematics. In this paper, the lower bound of
running tite §2(m/p+hlogp) {the base of all logarithms in this paper is 2) is presented for general parallel
best-first B&B algorithms on shared memory systems, where g is the number of processors available, A is the
number of expanded nodes, and = is the total number of active nodes in stete-space tree, In addition, a new
general parallel best-first B&B algerithm on PRAM-EREW is proposed by devising the shared memory into
cubeheaps. Theoretical analysis shows that it is the fastest algorithm for A< p » 2°. and it is asymptotically
antimal in this type of general parallel B&B algorithms. Computational experiments are conducted to salve 0—
r knapsack problem.
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Branch-and-Bound (B&B) algorithm is one of the fundamental schemes for the combmatorial search prob-
lems. It has been widely applied to such NP-hard optimization problems as intelligent system design, integer
programming, SAT problems, and theorem proving. Many researches concerning the theory and application of
B&D have been reported in literaturel' ™", The situation in this area can be generszlized as; research efforts for
serial algorithms are primarily problem-oriented, and are still 2 hot spotl?7®.. On the other hand, in the 1680's,
much wark, devoted to the evaluation of the theoretical perfarmance of parallel B&B algorithms, showed the
speedup abnormality and formulated the relation between the number of expanded nodes due to parallel B&B al-

gorithms and that due to serial B&B algorithms™ ™, Currently, many new fruits have sprung up one after anoth-
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er, for example, self-stabilizing distributed B&B algorithm, parameterized B&B strategy!®, central and dis-
tributed control schemes in a distributed environment™"?, and load balancing schemes of multiprocessort'!.

Under the cendition of the zame problem and the same strategy, data structore is the crux of implementing
B%B algorithm. Hash is an efficient technique to implement selection rule on average, but B&B algorithm is
usually used to solve NP-hard problems. The number of the expanded subproblems increases so fast that there
is not enough memory to implement Hash list in practice. Heap is an effective datz structurc for B&B algorithm,
and more efficient data structure celled cubeheap is presented to improved it. Moreover, the lower bound of
running time £(m+#klogh) is presented for general serial B&B algorithm™®, Based on these previous research-
es, general parallel B&B algorithm on PRAM-EREW is discussed in this paper. The algorithm discussed in this
paper betongs to the first type of general parallel B&B algorithms according to Gendron & Crainic's classifica-
tion, in which the best subproblem is selected and expanded further in parallel in each iteration. We present the
tower bound of parallel running time for this type of genere! parzllel B&B algorithm, and then devise a nearly
fastest general perallef BB algorithm based on the cubeheap structure. It is proved that the algorithm is also
asymptotically optimal in cost on PRAM-EREW.

We use the following notations in this paper.

k. the number of expanded subproblems when the first optimal solution is found.

m; the total number of created subproblems when the first cptimal solution is found.

r: the subprobiem number of a (sub)problem.

#: the number of processors available.

PE,; the i/th processor.

|8 the size of the data structure 8.

In the following, Section 1 shows serial B&B algorithm and cubeheap srructure, and describes paraillel oper-
ations on cubeheap as the preparing knowledge of the paper. Section Z designs and analyzes our parallel B&B al-
gorithm, and gives the proof of its optimality by presenting rhe lower bound of parallel running time. Section 3

shows our experimental results for 0—r knapsack protlem. The last section summarizes the research efforts.

1 Preliminaries

In essence, a general B&B algorithm can be viewed as an enumeration method for the optimization problem;

Z(P)zmigF(w) s in which F is a real funetion. S is a subset of real vector space. Assuming P could be solved
TE

by finitely enumerating the elements of p, B&E algorithm uses the four basic rules below far given problems.
Branching Rule divides the feasible solution set S into subsers 5,+5;+... +8,, in which §= L_JS; and S, NS;=g

for 1 j. Let v, denote the optimization subproblem corresponding to S;, Z(¥;) be its optimal value, then.
Z(p)= lg‘}‘il}"Z(P,). Subsequent division proceeds recursively until every subproblem can be tackled easily. Selec-
tion Rule chooses the most promising subproblem for further branching. judging hy the problem-specific lower
bounds of subproblems under discussion. Elimination Rule recognizes and eliminates subproblems that cannot
yield an optimal solution ta the original problem. A subproblem @ can be eliminated. either when it has been
solved, or there cxists another subproblem R which dominates @, i.e. , Z(R)<CZ(Q). Nutice that for the larter
case, early recognition is attainahle by comparing the lower bound of @'s and the upper bound of R’s optimal
value. Termination Rule determines whether = feasible solution has been optimal. Among the above, branching
rule depends on specific problems, while selection rule and eliminazion rule rely on specific search strategies and
data structure.

We mode! a BR:B algorithm as a rooted tree T with a cost function £( = ) over its leaves. The goal is to find
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the least-cost leaf in T. The input of the algorithm is the root of the tree T. The other nodes with the evalua-
tion furetion g( » } of the lower bound in the tree are generated on-line by the expansion procedure. Expanding
a node results in generating its children. If = is a child of » then g{z)<(g{w). v is an active node if and only if
&(v)<lz. For describing and analyzing our algorithm briefly, we assume without loss of generality that expand-
ing one node produces (at most) r active subnodes in the tree T 1.e. « mm=r X k. and the time required to pro-
duce a subnode is upper-bounded by a known constant. The running time unit is the comparison between the g
( «)s of the subnodes in tree 7. The general serial B&B procedure can be stated in the following algorithm-1"
in which root indicates the original problem, f( + ) is the cost function, g( « ) is the evaluation function of low-
er bound as input and z is the optimal sclution as output.
Algorithm GSB&B(T, f,g.2)
BEGIN
1. liveser:={roct}; /% initial =/
2. oot is a soluticn node THEN 2. =f (oot} ELSE z: =00  ENDIK;
3. WHILF lfwesef contains a node x with g(z)<Cz DO
3.1 x:= node in {iveset with best g{*); / % select the best subproblem to expand =/
3. 2 Delete x fram fiveset;
3.3 FOR each child v of x DO
[F v is a solution and f(y)<lz THEN z:==/{y) ENDIF;
IF » is not a leaf &{g(y)¥<Cz) THEN add » 10 ffveser; ENDIF
ENDFOR;
ENDWHILE ;
END,
On the computational complexity of GSB&B, the following Theorem 1 and the more sufficient data strue-
ture cubeheap were proposed in our previous researchl™. We guote them here for readahility of this paper.
Theorem 1. Every general serial B&B algorithm takes at least 20n —hlogh) comparisons to find the first
optimal solution.
Definition 1. A min-heap is a binary tree with heap-property: it has the heap shape, and the minimum ele-
meant is at the root in the first level. The size of 2 heap is the number of elements in it.
In this paper, a min-heap is called & heap in short. The problem of heap construction and heap operations
has received considerable attention in many articles, In the parallel models of computation, cptimal heap con-

[15~17]

struction algorithms and optimal heap operation algorithms have also been developed In a heap of size n,

. , . . n . logn | . . .
the algorithms*! with running time O( F—log”) for heap construction and O —g+‘.og logn | {or insertion

P
and deletion operations will be quoted in this paper. These algorithms achicve the best possible PRAM-EREW

running ume for any number of processors p.

Definition 2. Let Ay y4y.. .. +A, be j heaps, the smallest elements of them be A (13, 4:(1) ... 2 4;(10 Te-
spectively. A[1:;] be an address array satisfying that 840,101, A (1) ..., Ay (1) also construct a heap
called logic-heap. A cubeheap consists of A and {A), Az, .. 140, denoted by CH= (4, 1A 4 Ayse. . o800, Its

i

N

size 1s |CH | = = |4 and each & is called atom-heap.

Cubeheap is a variant of, but different from, traditional heap. The unit of the insertion operation on cube-
heap is an atom heap A. When |A] and | A} equal | for each ¢, the cubeheap degenerates 1o traditional heap.
The serial insertion and deletion operations on cubeheap are discussed in detal in Ref. (127, but the similar dis-

cussions are omitted here. The parallel insertion and deletior. operations on cubeheap are discussed as follows.
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Parallel insertion operation on cubeheap CH is easily performed by using the {ollowing procedure PCUBIN-
: L1g)
SERT(CH) enly on logic-heap A[ 1./} in running time O( b%—}—lug log 7

Procedure PCUBINSERT (CH)
/ * insert an atom-heap A into cubeheap CH with p processors » /
BEGIN
Insert A(L) into logic-heap A[1:;] by using Pinotti’s parallel insertion algorithm
END.
Parailel deletion operation on cubeheap CH is performed hy the following procedure PCUBDELETE(CH ).

(1]

In the procedure.the statement PDELETE (A) denotes the invocation of an optimal paralle]l heap deletion
scheme!'®), where A is an atom-heap with size r.
Procedure PCUBDELETE(CH )
/ * delete the top element on cubeheap CH with p processors = /
BEGIN
1. PDELETE (A7) s 7 * deletion in the first atom-heap in parallel * /
2. Heapify the logic-heap A[1:5] with new Aan1{1) in parallel by using Pinotui's algorithm!{'®.
END,
The running time of the PCUBDELETE (CH > is the sum of that of two steps, Le. .

o IE?HOg legr )+ lc'i I ¢ log log j| =0 1O;j+log log j+lo—§£+log fog »
where j is the size of lagic-heap.
2 Parallel Best-First B&B Algorithm and Its Running Time

The general parailel BREB algorithm discussed in this paper belongs to the first type of parallel B&R algo-
ritkm according to Gendron &. Crainic’s classification. in which the best subproblem is selected and expanded in-
to r subproblems in parallel with p processors in each iteration. In this section, we call this type of parallel B&B
algorithm the parallel best-first B&D algorithm.

2.1 Design of Parallel Best-first B&B Algorithn

Supposing there are p processors available PE,,PE,;....,.PE,, we devise the shared memory into p cube-
heaps CH.CH,.....('H,. This is different from the traditional ideas. which regard the shared memary as only
one heap™ . The best node up 1o the present is the node of minimal g{+) in the tree T, The parallel algorithm
executes the following steps iteratively oa the computing model PRAM-EREW,

+ Each cubeheap CH: contributes its local best &;» and p processors select the global best in parallel from
the p local bests 4. 28s,. .. +4,.

+ Assume the global best is b;, 1<0j=Cp. p processors PE,.PE,....,PE, delete the glohal best b; in the
cubeheap CH; in parallel.

* The p processors expand the global best 4, and produce (at most) r subnodes in perallel.

+ The g processors construct the » subnodes inio an atom-heap & in parallel.

+ The p processors select the cubeheap with the smallest logic-heap ., denoted as CH,, from CH, .CH,,... .
CH, in parallel.

+ The # processors insert the atom-hear A into the smallest cubeheap CH, in parallel.

Suppose that the cubeheap CH,={A,,{A},A},... |} with the logic-hezp of size /,,» L.e., | A=/, (=1,
Zoevnapy SL=Uals oo ol )y and SB=18) g5 0 oby by where b= 2} 1,(1) is the local best in CH, for 1si<C
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p. Based on the idea above, we give the following formal description of the parailel best-first B&.B algorithm, in
which the PSELECT (S ,a) is the invocation of the parallel selection scheme™*1, selecting the smallest eiement a
from the set S of size # in running time O{logp) with p processors.
INPUT; The tree T, cost {function f{-) and evaluation function g(-).
OUTPUT: The aptimal solution =z.
Algorithm GPBRB(T, figs2)
BEGIN
1. A4,[1]:=the address of glroot); A[(1) =g (root);
/ % root indicates the original problem and the CH, is initialized * /
FOR j=2 TO p PARA-DD 4,(1]: =%
/% cubeheaps CH,,CH,,... CH, are initialized » /
2. 1F root is a solution node THEN z: =/ (root) ELSE =z, =oo;
3. WHILE cubeheaps contain « node = with g (rr<z DO
3.1 PSELECT(SR,;): /* p processors select the global best b, from {6,,8:.. .. .6, } in parallel * /
3.2 PCUBDELETE(CH,); /* p processors delete the global best &; from CH, in parallel + /
3.3 FOR i—1TO p PARA-DO '
/% p processors expand the global best 4, into (at most) r subnodes y,»yzs-.. ¥, in parallel * /
Create sets S=1{31,¥ps-.. 311 SF={F0n 0 0n) e S50 1
SG={glwleglyd .. ovglyits
ENDFOR;
4.4 PSELKCTUSF, 33 / % p pracessors select good upper bound of = = /
3.5 IF f(y) <<z THEN z:=f(¥y;);
3.6 Construct the » subnodes into an atom-heap A in parallel ;
3.7 PSELECT(SL.k);
/* p provessors select a cubeheap CIT, in parallel, whosc logic-heap is the smatlest = /
PCUBINSERT (CH;.,A2;
/% p processors insert atom-hcep & into the smallest cubeheap CH, # ,/
ENDWHILE
END.
2.2 Theoretical analysis of the GPB&-B
First of all, we give the lower bound of running time stared in the following theorem for the parallel lest-
first B&DB algorithm.
Theorem 3. Every paralle] best-firsr B&B algorithm runs at least Q(m/p+Fklog p) time with # processors
on shared memory system.
Proof. For this type of parellel algorithms, in the algorithm GSB&B (in Section 13, because the steps 3.1,
3.2 and 3. 3 cannot be executed synchranously in single iteraticn, selecting the best node x from m active nodes
(mzzplwith p processors takes at least 2Clog p) comparisuns“g-'.. Since the WHILE-loop stops after being exe-
cuted kA rimes iteratively. £2(hlog p) comparisons are necessary, (Un the other hand, the best case is that m ac-
tive nodes are distributed evenly to the p processors, i.e. , each processor processes about m/p active nodes in
parallel. The £2(m/p) computational time is necessary. Hence, 22(m/p) +42{hlog p). L., 2(m/p+hlogp)
running time is necessary for this type of parallel algorithms. The theorem is proved. O
Let’s give the following analysis on the parallel running time of algorithm GPB&R. In the jth iteration. the
PSELECT(SL.4) and the PINSERT(CEH,,A) in step 3. 7 give assurance that the size of each logic-heap 15 na
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mote than (/p]. i.e. . the maximum in the set SL is less than [j/p]. Step 3.1 runs in G(logp) time. Step 3.
2 runs in QC(1/p)+log(i/p)+log log (/) | (1/p) -logr—+log logr) time according to the running time of paral-
lel procedures PCUBDELETE in Section 1. In step 3.3, each processor can process at most [r/p] subnodes,
hence, step 3. 3 runs in O(r/p). Step 3. 4 runs in O{logr) time. Step 3.5 runs in O(1). Step 3. 6 runs in O/
2+ logr) with p processors by using Pinotti’s algorithm™'®!, and step 3. 7 runs in O (logp+ 1/p log{j/p)+

log log(j/#)). Summing up the analysis above, we obtain the following running time in jth iteration,

O(%-log %«Hog log %-{—%—{—logr—{-logp) (1}
Let T (makory py and Clmshar, p) be the running time and the cost of algorithm GPB&:B, respectively. Be-
cause
h ¢
2| % 0g L +log log £+ 7+ log r+1og ?)
<t 5 log ?-Hl-log log ?+%+h'lug p+hlog r

(m " h k h
= ( —P-th-log p] S ?-h)g ?—I-h-log log 7—!—h-log rl,
hence, the wsal running time of the PB&B algorithiu is

TGnsh,ryp)= O( —+-h+log p) +O( —log ——l—h log log —+h og r'

And
i-]cg £+h-log log iJrh-log r log b iog log L3
¥4 i p _ b oy log r (2)
hlog p plog p log log p

The first item of Eq. {2) is no more than 1 for <(p""", the second item is no mare than 1 for A<p 2%, and the

third item is a constant for given problem and given branching strziegy. Conclusively, the value of Eq. (2) is na

more than a constant log 4+ 2 for A<<min{p**', p+2"}, i.e. A<lp-2*. Hence we obtain T (m,kir,p)=
log p b P

0 Terhlog p] for h<Cp+2”. In other words, the parallel algorithm GPB&B is the fastest one for A<Tp-27

according to Theorem 2. For example, when we use p=2" processors. the GPB&B is the fastest algorithm if the
number of expanded nodes is less than 2*". This cundition is easily satisfiable in practice.

On the other hand, the cost of algorithm GPB&B is

Clmhorsp)=pXTnshors p)=0| m-thelog -Z—er-h-log( repelog %) )

Because the computational complexity of serial algorithm GSB&B is O(m+hlog h)s and m+h-log —2—<m+

hlog h, we ohtain

m—+h-log -%-}—p'h-log( rplog %] p-h-log( reprlog %J

o T hlog % <1+ et Flog h

h
p-log[ r-p-log ;]
r+iog A
h
prlog| rep-log ry
Since }EE, r-+log h
hence, the cost C(m.h,r,p) is asymptotically optimal.

=1+

=0

Summarizing the analysis above, we obtain the following theorem.
Theorem 3. The GPB&B is the fastest general parallel best-first B&B algorithm for A< p+2%, and it is

©|v[
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asymptotically optimal.
3 Experimental Results

The computational experiments are conducted on Dawning-1000 Massively Parallel Processing system with
32 computing nodes in a 2D wormhole mesh. We use our algorithm GPB&3B to solve the following combinatorial
optimization problem called 0—r knapsack problem.

The ¢—r knapsack problem can be formulated as.

»
maximize ;c.-x;
a
subject to ,/_Ea,.::.EEB
€0 s s i=1.240 0000
where ¢, and o, respectively denote the value and the weight of item ¢, and B denotes the capacity of the
knapsack.

In our experiments, r is fixed 1o 7 a; is an integer randomly generated in [1,800], ¢, is randomly generated
and independent of a;,. The goal is to test the constant coetficient in theoretical running time T Groh,7.p) for
different instances with variabies p.n, and B. The followirg tables show the number of comparisons between
£(+)s that the GPB&B needed , and the ratics between the experimental results and the theoretical running time
for randoroly generated west vroblems in each case.

Table 1 The ratios for different p values (B=7000, 2=2032

? lowbond T Gnehsr py T CGmahoars p) /towwbownd Theat Trest /T Grvhar p)
2 28 038 258 546 9.22 533 048 2,06
4 40 468 206 774 511 421 974 2. 04
& 45 048 194 587 3.97 360 425 2.01
& 55500 190 725 3. 44 376 827 1.98
10 60 656 189 &70 3.13 6% 20 1.93
17 84 947 189 777 2, 92 365 857 1.93
14 68 621 190 815 2.77 363 500 1.81
16 71 832 191 315 2. 66 362 072 1.8%
18 T4 684 182 332 2. 58 361 214 1.88
20 77 248 193 397 2.50 360 723 1.87

In the three tables, lowhound =m/p+hlog p, Ten is the experimental results for the number of compar-
isons between g (s that the GPB&RB needed,

i I
iy |
2 helog -

which is the running time T (w ,A.7, ) with the constant ceefficient 1.

T (Gn ,h,r,p)ﬂ[ -log %—i—k-log log %-Hn-log 7

Teble 1 considers a fixed 0—» knapsack problem in which »=200, B=7 000. We employ our algorithm
GPB&E to solve it wita different numbers of processars from 2 upto 20. The number of expanded nodes £ is 17

633 and the total number of active nodes m is 20 811 when the first optimal solutien is found. In the fourth col-
T (m .}t vrsﬁ)

urmr » <73 for p2»12., which shows that the GPB&B algorithm runs in the O(m/p+hlog g2 tiwe

{owbound
with constant coefficient 3, i e. the GPB&B is the fastest algorithm for A< p 2% since A=17 633< 1229 p~
27, In the sixth colummn. Wﬂ-:—}:;r,—}b) is no more than 2.1 and decreases with the increasing p, This result

shows that the theoretical running time 7 (sm,hs7,p) in section 2 is correct, and with smaller coefficient. This

result is also presernted in Table 2 and Teble 3.
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Table 2 The ratios for different n values (B=46000, p=28)

I h m T Cntshars p) T et T/ T (rash v, p)
20 77 §6 521 1122 1.81
40 72 80 57 1039 1. 80
60 45 ®7 345 602 1. 74
an 483 577 4 473 553 1.9
100 744 2923 7 309 13591 1. 86
120 1334 3§04 19 3569 37433 1. 43
40 3 500 6 705 37 014 71922 1.54
160 728 2 671 7121 13 279 1. 88
180 28 157 31 947 308 618 813 D60 1.98
200 8 057 9 308 B4 737 166 894 1. 57

Table 3 The ratios for different B values (#=150, p=28)

B h b T (i rhars p) ™ Toeatd T Gy har s p)
1 000D 43 1060 330 571 1.73
2 000 50 143 395 681 1.72
3 000 234 475 2 095 3 893 1.86
4000 81 200 670 1190 .78
5000 114 527 1273 2 277 1.79
§ 600 121 487 1 061 1874 .78
7 000 B4 330 538 908 1. 64
& 000 544 Z 608 0 316 Y71y 1.83
9 oY 182 1 085 1 GRE 2 953 1.73
10 500 832 3 887 § 333 11 415 1. 80

Table 2 considers the randam instances for fixed B=5 000, p=8&, and different numberss of items n irom
20 upto 200, while Table 3 considers the random instances for fixed n=150, p==8, and different capacities of
the knapsack B from 1 000 upto 10 000, In these two tables, different instances lead to different £ and 2, but

the ratios are close (o and less than 2. These results clearly show the correctness of our analysis in Section 2.

4 Conclusions

Iranch-and-bound algorithm has been widely applied to NP-hard optimization problems. A BRH algorithm
runs in different rime lengths for different problems and differen: B&B strategies. But for a given problem and
given B&H strategy, the running time of the BR:B algorithm heavily depends on the data structure. In this pa-
per, under the condition of given problem and the given strategy, the general parallel best-first B&B algorithm
is discussed on shared memory system. The lower bound of parallel runaing time is presented for this type of
parallel B&B algarithm. A new general parallel algorithm is proposed on PRAM-EREW by devising the shared
metnory into g cubcheaps which are more efficient data structure than traditional heap strueture. Thearetical
analysis shows that the algerithm GPB&B proposed in this paper is a near.y festest one, and it is also asymptoti-
cally optimal. These conclusions are significant since & grows exponentially {for NP-hard optimization problems.
Some simulated computations are performed for 0-r knapsack problem which is a famous NP-hard optimization
problern. The experimental resclts show the correctness of our analysis,

Acknowledgment The suthors thank Wei Yuan for giving us some references and Wan Ying-yu for giving use-
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