1000-9825/2000/11(12)1572-09 2000 Journal of Software 0 # % 38 Vol.11, No. 12

A Nearly Fastest and Asymptotically Optimal General Parallel
Branch-and-Bound Algorithm’

WU Ji-gang'*?, JI Yong-chang®, CHEN Guo-liang®

‘{Department of Computer Science. Yantai University, Yantai 264005, Chinal;

*(Department of Compurer Science and Technology, University of Science and Technology of China, Hefel
230026, China)

E-mail: jewu@mail. uste. edu. en; gangjiwu@263. net

Received July 13, 1999; accepted Cctober 22, 1959

Ahstract . Branch-and-Bound (B&B) is a problem-solving technique which is widely used for various prob-
lems encountered in operations research and combinatorial mathematics. In this paper, the lower bound of
running tite §2(m/p+hlogp) {the base of all logarithms in this paper is 2) is presented for general parallel
best-first B&B algorithms on shared memory systems, where g is the number of processors available, A is the
number of expanded nodes, and = is the total number of active nodes in stete-space tree, In addition, a new
general parallel best-first B&B algerithm on PRAM-EREW is proposed by devising the shared memory into
cubeheaps. Theoretical analysis shows that it is the fastest algorithm for A< p » 2°. and it is asymptotically
antimal in this type of general parallel B&B algorithms. Computational experiments are conducted to salve 0—
r knapsack problem.

Key words: branch-and-bound; cubeheap; PRAM-EREW ; parallel algorithm; combinatorial search

Branch-and-Bound (B&B) algorithm is one of the fundamental schemes for the combmatorial search prob-
lems. It has been widely applied to such NP-hard optimization problems as intelligent system design, integer
programming, SAT problems, and theorem proving. Many researches concerning the theory and application of
B&D have been reported in literaturel' ™", The situation in this area can be generszlized as; research efforts for
serial algorithms are primarily problem-oriented, and are still 2 hot spotl?7®.. On the other hand, in the 1680's,
much wark, devoted to the evaluation of the theoretical perfarmance of parallel B&B algorithms, showed the
speedup abnormality and formulated the relation between the number of expanded nodes due to parallel B&B al-

gorithms and that due to serial B&B algorithms™ ™, Currently, many new fruits have sprung up one after anoth-

+ This project is supported by the Ph. D. Fund of the Ministry nf Education of China under Grant No. 9703825 (AR ¥ H
MM S8 L), WU Ji-gang was bom in 1963, He received the BS degree in computational mathematics from Langhou Uriver-
sity in 1983, and studied some M. 8. degree courses in Southeast University in 1984, He was assistant professor, lecturer suc-
cessively in Lanzhou University from 1983 to 1993, He is an associzte professor in Yantal University and & doctoral candidate in
computer science and technology at University of Science and Technology of China, His current research interests include paral-
lel computing, theorem of algorithm . computational geometry, and artificial intelligence. JI Yoang-chang was horn in 1971, He
received the BS degree in computer science from Anhui University in 1993, the MS degree in parallel computing from University
of Science and Technology of China in 1995, and the Ph. I3, degree in 1998, His research interests include parallel computation-
al models, design and analysis of algorithm. CHEN Guo-liang was burn in 1938, He is a professor in high performance parallel
computing st University of Science and Technology of China. His intercsts include parallel computing, computer architecture,

and computational geometry.

SCAHIFICIT hieped/ www. jos. org. cn

HAR FOLFRREHLARHNTHHTREE — 1573 —

er, for example, self-stabilizing distributed B&B algorithm, parameterized B&B strategy!®, central and dis-
tributed control schemes in a distributed environment™"?, and load balancing schemes of multiprocessort'!.

Under the cendition of the zame problem and the same strategy, data structore is the crux of implementing
B%B algorithm. Hash is an efficient technique to implement selection rule on average, but B&B algorithm is
usually used to solve NP-hard problems. The number of the expanded subproblems increases so fast that there
is not enough memory to implement Hash list in practice. Heap is an effective datz structurc for B&B algorithm,
and more efficient data structure celled cubeheap is presented to improved it. Moreover, the lower bound of
running time £(m+#klogh) is presented for general serial B&B algorithm™®, Based on these previous research-
es, general parallel B&B algorithm on PRAM-EREW is discussed in this paper. The algorithm discussed in this
paper betongs to the first type of general parallel B&B algorithms according to Gendron & Crainic's classifica-
tion, in which the best subproblem is selected and expanded further in parallel in each iteration. We present the
tower bound of parallel running time for this type of genere! parzllel B&B algorithm, and then devise a nearly
fastest general perallef BB algorithm based on the cubeheap structure. It is proved that the algorithm is also
asymptotically optimal in cost on PRAM-EREW.

We use the following notations in this paper.

k. the number of expanded subproblems when the first optimal solution is found.

m; the total number of created subproblems when the first cptimal solution is found.

r: the subprobiem number of a (sub)problem.

#: the number of processors available.

PE,; the i/th processor.

|8 the size of the data structure 8.

In the following, Section 1 shows serial B&B algorithm and cubeheap srructure, and describes paraillel oper-
ations on cubeheap as the preparing knowledge of the paper. Section Z designs and analyzes our parallel B&B al-
gorithm, and gives the proof of its optimality by presenting rhe lower bound of parallel running time. Section 3

shows our experimental results for 0—r knapsack protlem. The last section summarizes the research efforts.

1 Preliminaries

In essence, a general B&B algorithm can be viewed as an enumeration method for the optimization problem;

Z(P)zmigF(w) s in which F is a real funetion. S is a subset of real vector space. Assuming P could be solved
TE

by finitely enumerating the elements of p, B&E algorithm uses the four basic rules below far given problems.
Branching Rule divides the feasible solution set S into subsers 5,+5;+... +8,, in which §= L_JS; and S, NS;=g

for 1 j. Let v, denote the optimization subproblem corresponding to S;, Z(¥;) be its optimal value, then.
Z(p)= lg‘}‘il}"Z(P,). Subsequent division proceeds recursively until every subproblem can be tackled easily. Selec-
tion Rule chooses the most promising subproblem for further branching. judging hy the problem-specific lower
bounds of subproblems under discussion. Elimination Rule recognizes and eliminates subproblems that cannot
yield an optimal solution ta the original problem. A subproblem @ can be eliminated. either when it has been
solved, or there cxists another subproblem R which dominates @, i.e. , Z(R)<CZ(Q). Nutice that for the larter
case, early recognition is attainahle by comparing the lower bound of @'s and the upper bound of R’s optimal
value. Termination Rule determines whether = feasible solution has been optimal. Among the above, branching
rule depends on specific problems, while selection rule and eliminazion rule rely on specific search strategies and
data structure.

We mode! a BR:B algorithm as a rooted tree T with a cost function £(=) over its leaves. The goal is to find

http:// www. jos. org. cn

© hIEREEE

— 1574 — Journal of Software ¥ AFEH 2000,11012)

the least-cost leaf in T. The input of the algorithm is the root of the tree T. The other nodes with the evalua-
tion furetion g(» } of the lower bound in the tree are generated on-line by the expansion procedure. Expanding
a node results in generating its children. If = is a child of » then g{z)<(g{w). v is an active node if and only if
&(v)<lz. For describing and analyzing our algorithm briefly, we assume without loss of generality that expand-
ing one node produces (at most) r active subnodes in the tree T 1.e. « mm=r X k. and the time required to pro-
duce a subnode is upper-bounded by a known constant. The running time unit is the comparison between the g
(«)s of the subnodes in tree 7. The general serial B&B procedure can be stated in the following algorithm-1"
in which root indicates the original problem, f(+) is the cost function, g(«) is the evaluation function of low-
er bound as input and z is the optimal sclution as output.
Algorithm GSB&B(T, f,g.2)
BEGIN
1. liveser:={roct}; /% initial =/
2. oot is a soluticn node THEN 2. =f (oot} ELSE z: =00 ENDIK;
3. WHILF lfwesef contains a node x with g(z)<Cz DO
3.1 x:= node in {iveset with best g{*); / % select the best subproblem to expand =/
3. 2 Delete x fram fiveset;
3.3 FOR each child v of x DO
[F v is a solution and f(y)<lz THEN z:==/{y) ENDIF;
IF » is not a leaf &{g(y)¥<Cz) THEN add » 10 ffveser; ENDIF
ENDFOR;
ENDWHILE ;
END,
On the computational complexity of GSB&B, the following Theorem 1 and the more sufficient data strue-
ture cubeheap were proposed in our previous researchl™. We guote them here for readahility of this paper.
Theorem 1. Every general serial B&B algorithm takes at least 20n —hlogh) comparisons to find the first
optimal solution.
Definition 1. A min-heap is a binary tree with heap-property: it has the heap shape, and the minimum ele-
meant is at the root in the first level. The size of 2 heap is the number of elements in it.
In this paper, a min-heap is called & heap in short. The problem of heap construction and heap operations
has received considerable attention in many articles, In the parallel models of computation, cptimal heap con-

[15~17]

struction algorithms and optimal heap operation algorithms have also been developed In a heap of size n,

. , . . n . logn | . . .
the algorithms*! with running time O(F—log”) for heap construction and O —g+‘.og logn | {or insertion

P
and deletion operations will be quoted in this paper. These algorithms achicve the best possible PRAM-EREW

running ume for any number of processors p.

Definition 2. Let Ay y4y.. .. +A, be j heaps, the smallest elements of them be A (13, 4:(1) ... 2 4;(10 Te-
spectively. A[1:;] be an address array satisfying that 840,101, A (1) ..., Ay (1) also construct a heap
called logic-heap. A cubeheap consists of A and {A), Az, .. 140, denoted by CH= (4, 1A 4 Ayse. . o800, Its

i

N

size 1s |CH | = = |4 and each & is called atom-heap.

Cubeheap is a variant of, but different from, traditional heap. The unit of the insertion operation on cube-
heap is an atom heap A. When |A] and | A} equal | for each ¢, the cubeheap degenerates 1o traditional heap.
The serial insertion and deletion operations on cubeheap are discussed in detal in Ref. (127, but the similar dis-

cussions are omitted here. The parallel insertion and deletior. operations on cubeheap are discussed as follows.

FBCERAEIFATET http:/ www. jos. org. cn

Agm 5 LFREEHERHG AR RETE ~ 1575 —

Parallel insertion operation on cubeheap CH is easily performed by using the {ollowing procedure PCUBIN-
: L1g)
SERT(CH) enly on logic-heap A[1./} in running time O(b%—}—lug log 7

Procedure PCUBINSERT (CH)
/ * insert an atom-heap A into cubeheap CH with p processors » /
BEGIN
Insert A(L) into logic-heap A[1:;] by using Pinotti’s parallel insertion algorithm
END.
Parailel deletion operation on cubeheap CH is performed hy the following procedure PCUBDELETE(CH).

(1]

In the procedure.the statement PDELETE (A) denotes the invocation of an optimal paralle]l heap deletion
scheme!'®), where A is an atom-heap with size r.
Procedure PCUBDELETE(CH)
/ * delete the top element on cubeheap CH with p processors = /
BEGIN
1. PDELETE (A7) s 7 * deletion in the first atom-heap in parallel * /
2. Heapify the logic-heap A[1:5] with new Aan1{1) in parallel by using Pinotui's algorithm!{'®.
END,
The running time of the PCUBDELETE (CH > is the sum of that of two steps, Le. .

o IE?HOg legr)+ lc'i I ¢ log log j| =0 1O;j+log log j+lo—§£+log fog »
where j is the size of lagic-heap.
2 Parallel Best-First B&B Algorithm and Its Running Time

The general parailel BREB algorithm discussed in this paper belongs to the first type of parallel B&R algo-
ritkm according to Gendron &. Crainic’s classification. in which the best subproblem is selected and expanded in-
to r subproblems in parallel with p processors in each iteration. In this section, we call this type of parallel B&B
algorithm the parallel best-first B&D algorithm.

2.1 Design of Parallel Best-first B&B Algorithn

Supposing there are p processors available PE,,PE,;....,.PE,, we devise the shared memory into p cube-
heaps CH.CH,.....('H,. This is different from the traditional ideas. which regard the shared memary as only
one heap™ . The best node up 1o the present is the node of minimal g{+) in the tree T, The parallel algorithm
executes the following steps iteratively oa the computing model PRAM-EREW,

+ Each cubeheap CH: contributes its local best &;» and p processors select the global best in parallel from
the p local bests 4. 28s,. .. +4,.

+ Assume the global best is b;, 1<0j=Cp. p processors PE,.PE,....,PE, delete the glohal best b; in the
cubeheap CH; in parallel.

* The p processors expand the global best 4, and produce (at most) r subnodes in perallel.

+ The g processors construct the » subnodes inio an atom-heap & in parallel.

+ The p processors select the cubeheap with the smallest logic-heap ., denoted as CH,, from CH, .CH,,... .
CH, in parallel.

+ The # processors insert the atom-hear A into the smallest cubeheap CH, in parallel.

Suppose that the cubeheap CH,={A,,{A},A},... |} with the logic-hezp of size /,,» L.e., | A=/, (=1,
Zoevnapy SL=Uals oo ol)y and SB=18) g5 0 oby by where b= 2} 1,(1) is the local best in CH, for 1si<C

EIFFEET http:/ www. jos. org. cn

— 1576 — Journal of Software $HAFFEH 2000,11(12)

p. Based on the idea above, we give the following formal description of the parailel best-first B&.B algorithm, in
which the PSELECT (S ,a) is the invocation of the parallel selection scheme™*1, selecting the smallest eiement a
from the set S of size # in running time O{logp) with p processors.
INPUT; The tree T, cost {function f{-) and evaluation function g(-).
OUTPUT: The aptimal solution =z.
Algorithm GPBRB(T, figs2)
BEGIN
1. A4,[1]:=the address of glroot); A[(1) =g (root);
/ % root indicates the original problem and the CH, is initialized * /
FOR j=2 TO p PARA-DD 4,(1]: =%
/% cubeheaps CH,,CH,,... CH, are initialized » /
2. 1F root is a solution node THEN z: =/ (root) ELSE =z, =oo;
3. WHILE cubeheaps contain « node = with g (rr<z DO
3.1 PSELECT(SR,;): /* p processors select the global best b, from {6,,8:.. .. .6, } in parallel * /
3.2 PCUBDELETE(CH,); /* p processors delete the global best &; from CH, in parallel + /
3.3 FOR i—1TO p PARA-DO '
/% p processors expand the global best 4, into (at most) r subnodes y,»yzs-.. ¥, in parallel * /
Create sets S=1{31,¥ps-.. 311 SF={F0n 0 0n) e S50 1
SG={glwleglyd .. ovglyits
ENDFOR;
4.4 PSELKCTUSF, 33 / % p pracessors select good upper bound of = = /
3.5 IF f(y) <<z THEN z:=f(¥y;);
3.6 Construct the » subnodes into an atom-heap A in parallel ;
3.7 PSELECT(SL.k);
/* p provessors select a cubeheap CIT, in parallel, whosc logic-heap is the smatlest = /
PCUBINSERT (CH;.,A2;
/% p processors insert atom-hcep & into the smallest cubeheap CH, # ,/
ENDWHILE
END.
2.2 Theoretical analysis of the GPB&-B
First of all, we give the lower bound of running time stared in the following theorem for the parallel lest-
first B&DB algorithm.
Theorem 3. Every paralle] best-firsr B&B algorithm runs at least Q(m/p+Fklog p) time with # processors
on shared memory system.
Proof. For this type of parellel algorithms, in the algorithm GSB&B (in Section 13, because the steps 3.1,
3.2 and 3. 3 cannot be executed synchranously in single iteraticn, selecting the best node x from m active nodes
(mzzplwith p processors takes at least 2Clog p) comparisuns“g-'.. Since the WHILE-loop stops after being exe-
cuted kA rimes iteratively. £2(hlog p) comparisons are necessary, (Un the other hand, the best case is that m ac-
tive nodes are distributed evenly to the p processors, i.e. , each processor processes about m/p active nodes in
parallel. The £2(m/p) computational time is necessary. Hence, 22(m/p) +42{hlog p). L., 2(m/p+hlogp)
running time is necessary for this type of parallel algorithms. The theorem is proved. O
Let’s give the following analysis on the parallel running time of algorithm GPB&R. In the jth iteration. the
PSELECT(SL.4) and the PINSERT(CEH,,A) in step 3. 7 give assurance that the size of each logic-heap 15 na

http:/ www. jos. org. cn

e .+ HERALS AT SRRERES - 1577

mote than (/p]. i.e. . the maximum in the set SL is less than [j/p]. Step 3.1 runs in G(logp) time. Step 3.
2 runs in QC(1/p)+log(i/p)+log log (/) | (1/p) -logr—+log logr) time according to the running time of paral-
lel procedures PCUBDELETE in Section 1. In step 3.3, each processor can process at most [r/p] subnodes,
hence, step 3. 3 runs in O(r/p). Step 3. 4 runs in O{logr) time. Step 3.5 runs in O(1). Step 3. 6 runs in O/
2+ logr) with p processors by using Pinotti’s algorithm™'®!, and step 3. 7 runs in O (logp+ 1/p log{j/p)+

log log(j/#)). Summing up the analysis above, we obtain the following running time in jth iteration,

O(%-log %«Hog log %-{—%—{—logr—{-logp) (1}
Let T (makory py and Clmshar, p) be the running time and the cost of algorithm GPB&:B, respectively. Be-
cause
h ¢
2| % 0g L +log log £+ 7+ log r+1og ?)
<t 5 log ?-Hl-log log ?+%+h'lug p+hlog r

(m " h k h
= (—P-th-log p] S ?-h)g ?—I-h-log log 7—!—h-log rl,
hence, the wsal running time of the PB&B algorithiu is

TGnsh,ryp)= O(—+-h+log p) +O(—log ——l—h log log —+h og r'

And
i-]cg £+h-log log iJrh-log r log b iog log L3
¥4 i p _ b oy log r (2)
hlog p plog p log log p

The first item of Eq. {2) is no more than 1 for <(p""", the second item is no mare than 1 for A<p 2%, and the

third item is a constant for given problem and given branching strziegy. Conclusively, the value of Eq. (2) is na

more than a constant log 4+ 2 for A<<min{p**', p+2"}, i.e. A<lp-2*. Hence we obtain T (m,kir,p)=
log p b P

0 Terhlog p] for h<Cp+2”. In other words, the parallel algorithm GPB&B is the fastest one for A<Tp-27

according to Theorem 2. For example, when we use p=2" processors. the GPB&B is the fastest algorithm if the
number of expanded nodes is less than 2*". This cundition is easily satisfiable in practice.

On the other hand, the cost of algorithm GPB&B is

Clmhorsp)=pXTnshors p)=0| m-thelog -Z—er-h-log(repelog %))

Because the computational complexity of serial algorithm GSB&B is O(m+hlog h)s and m+h-log —2—<m+

hlog h, we ohtain

m—+h-log -%-}—p'h-log(rplog %] p-h-log(reprlog %J

o T hlog % <1+ et Flog h

h
p-log[r-p-log ;]
r+iog A
h
prlog| rep-log ry
Since }EE, r-+log h
hence, the cost C(m.h,r,p) is asymptotically optimal.

=1+

=0

Summarizing the analysis above, we obtain the following theorem.
Theorem 3. The GPB&B is the fastest general parallel best-first B&B algorithm for A< p+2%, and it is

©|v[

PEUFFTE hitpi/ www. jos. org. cn

— 1578 — Journal of Software £ F4HR 2000,11(12)

asymptotically optimal.
3 Experimental Results

The computational experiments are conducted on Dawning-1000 Massively Parallel Processing system with
32 computing nodes in a 2D wormhole mesh. We use our algorithm GPB&3B to solve the following combinatorial
optimization problem called 0—r knapsack problem.

The ¢—r knapsack problem can be formulated as.

»
maximize ;c.-x;
a
subject to ,/_Ea,.::.EEB
€0 s s i=1.240 0000
where ¢, and o, respectively denote the value and the weight of item ¢, and B denotes the capacity of the
knapsack.

In our experiments, r is fixed 1o 7 a; is an integer randomly generated in [1,800], ¢, is randomly generated
and independent of a;,. The goal is to test the constant coetficient in theoretical running time T Groh,7.p) for
different instances with variabies p.n, and B. The followirg tables show the number of comparisons between
£(+)s that the GPB&B needed , and the ratics between the experimental results and the theoretical running time
for randoroly generated west vroblems in each case.

Table 1 The ratios for different p values (B=7000, 2=2032

? lowbond T Gnehsr py T CGmahoars p) /towwbownd Theat Trest /T Grvhar p)
2 28 038 258 546 9.22 533 048 2,06
4 40 468 206 774 511 421 974 2. 04
& 45 048 194 587 3.97 360 425 2.01
& 55500 190 725 3. 44 376 827 1.98
10 60 656 189 &70 3.13 6% 20 1.93
17 84 947 189 777 2, 92 365 857 1.93
14 68 621 190 815 2.77 363 500 1.81
16 71 832 191 315 2. 66 362 072 1.8%
18 T4 684 182 332 2. 58 361 214 1.88
20 77 248 193 397 2.50 360 723 1.87

In the three tables, lowhound =m/p+hlog p, Ten is the experimental results for the number of compar-
isons between g (s that the GPB&RB needed,

i I
iy |
2 helog -

which is the running time T (w ,A.7,) with the constant ceefficient 1.

T (Gn ,h,r,p)ﬂ[-log %—i—k-log log %-Hn-log 7

Teble 1 considers a fixed 0—» knapsack problem in which »=200, B=7 000. We employ our algorithm
GPB&E to solve it wita different numbers of processars from 2 upto 20. The number of expanded nodes £ is 17

633 and the total number of active nodes m is 20 811 when the first optimal solutien is found. In the fourth col-
T (m .}t vrsﬁ)

urmr » <73 for p2»12., which shows that the GPB&B algorithm runs in the O(m/p+hlog g2 tiwe

{owbound
with constant coefficient 3, i e. the GPB&B is the fastest algorithm for A< p 2% since A=17 633< 1229 p~
27, In the sixth colummn. Wﬂ-:—}:;r,—}b) is no more than 2.1 and decreases with the increasing p, This result

shows that the theoretical running time 7 (sm,hs7,p) in section 2 is correct, and with smaller coefficient. This

result is also presernted in Table 2 and Teble 3.

© HIEERES AT hip:/ www. jos. org. cn

gl F. LRSS ERAS A TFRFRER — 1578 —

Table 2 The ratios for different n values (B=46000, p=28)

I h m T Cntshars p) T et T/ T (rash v, p)
20 77 §6 521 1122 1.81
40 72 80 57 1039 1. 80
60 45 ®7 345 602 1. 74
an 483 577 4 473 553 1.9
100 744 2923 7 309 13591 1. 86
120 1334 3§04 19 3569 37433 1. 43
40 3 500 6 705 37 014 71922 1.54
160 728 2 671 7121 13 279 1. 88
180 28 157 31 947 308 618 813 D60 1.98
200 8 057 9 308 B4 737 166 894 1. 57

Table 3 The ratios for different B values (#=150, p=28)

B h b T (i rhars p) ™ Toeatd T Gy har s p)
1 000D 43 1060 330 571 1.73
2 000 50 143 395 681 1.72
3 000 234 475 2 095 3 893 1.86
4000 81 200 670 1190 .78
5000 114 527 1273 2 277 1.79
§ 600 121 487 1 061 1874 .78
7 000 B4 330 538 908 1. 64
& 000 544 Z 608 0 316 Y71y 1.83
9 oY 182 1 085 1 GRE 2 953 1.73
10 500 832 3 887 § 333 11 415 1. 80

Table 2 considers the randam instances for fixed B=5 000, p=8&, and different numberss of items n irom
20 upto 200, while Table 3 considers the random instances for fixed n=150, p==8, and different capacities of
the knapsack B from 1 000 upto 10 000, In these two tables, different instances lead to different £ and 2, but

the ratios are close (o and less than 2. These results clearly show the correctness of our analysis in Section 2.

4 Conclusions

Iranch-and-bound algorithm has been widely applied to NP-hard optimization problems. A BRH algorithm
runs in different rime lengths for different problems and differen: B&B strategies. But for a given problem and
given B&H strategy, the running time of the BR:B algorithm heavily depends on the data structure. In this pa-
per, under the condition of given problem and the given strategy, the general parallel best-first B&B algorithm
is discussed on shared memory system. The lower bound of parallel runaing time is presented for this type of
parallel B&B algarithm. A new general parallel algorithm is proposed on PRAM-EREW by devising the shared
metnory into g cubcheaps which are more efficient data structure than traditional heap strueture. Thearetical
analysis shows that the algerithm GPB&B proposed in this paper is a near.y festest one, and it is also asymptoti-
cally optimal. These conclusions are significant since & grows exponentially {for NP-hard optimization problems.
Some simulated computations are performed for 0-r knapsack problem which is a famous NP-hard optimization
problern. The experimental resclts show the correctness of our analysis,

Acknowledgment The suthors thank Wei Yuan for giving us some references and Wan Ying-yu for giving use-
ful discussions on this paper.

References:
[1] Gendron, B., Crainiz, T.G. Parallel branch-znd-bound algorithms: survey and synthesis. Operations Research, 1894,
42083, 1042~ 1085.
[2] Liao Ching-Jong. New node selection strategy in the branch-and-bound procedure. Comouters & Operations Research,

SCAHIFICIT hieped/ www. jos. org. cn

1580 — Journal of Software AR FI| 2000,11(12)

1994,210107:1095~1101.

[3] Cheng Chun-Hung. B&B clustering algorithm. IEEE Transactigns on Systems, Man and Cybernetics, 1955, 25¢5); 895
~R9R.

[4] Wu Ji-gang. General data structure and algorithms for branch-and-bound search. In: Information Intelligence and Sys-
tems, the 1996 IEEE International Con‘erence on Systems, Man and Cybernetics. Beijing: International Academic Pub-
lisher, 1396,2¢4):1586~~1588,

[3] Nguren. V. T. Global op:imuzation techniques for solving rhe general quadratic integer programming probiem. Compu-
tazional Optimization and App.ications, 1998,10(2):149~~143.

[6 Wah, B.W., Ma, E. Y. W. MANIP—a multicomputer architecture for sclving combinatorial extremum search prob-
lems. [EEE Transactions on Computers, 1984,C-33(5);377~~390.

71 Lai. T.H., Sahni, S. Anomalies of perallel branch-and-bound algorithms. Communications of the ACM, 1984, 27(&) .
594 ~602. o

[8] Yahfoufi Nassir. Dowaji Saleh. Belf-stabilizing distributed branch-and-bound algorithm. In: International Phoenix Con-
ference on Computers and Commuzications. Piscataway, NJ; IEEE Computer Society. 1956. 246~-252.

[8] Jomsson, J.» Shin, K. (. Parameterized branch-and-bound strategy for scheduling precedence-constrained jobs on a
multiprocessor system. In: Proceedings of the International Cenference on Paralie} Processing. Piscataway, NJ; IEEE
Computer Society, 1987, [58~~165.

£10] Shineno, Y., Harada, K., Hirabayashi, R. Contrel schemes in a generalized utility o1 perallel branch-and bound elgo-
nthms. In: Proccedings of the [nternational Parailel Processing Symposium, IPPS. Los Alamitos, CA . IEEE Computer
Society, 1997, §21~627.

[11] Mahapatra, N, R., Duzt, S. Adaptive quality equalizing; high-performance laad balancing for parallel branch-and-
bound scross applications and ¢computing systems. In: Iroceedings of the Internationzl Parallel Processing Symposiumm,
IPPS. lLos Alamitos, CA: IEEE Computer Sceiety, 1998, 796~ 800,

[12] Wy Ji-gang, Chen Guo-lizng, Wu Ming. Cubeheap and branch-and-bound algorithms. Journa) of Software, 2000, 11
(73 :984~989 (in Chinese).

(18] Nzu. D.S., Kumar, V., Kanal, 1.. General branch-and-bound and its relation to a 4° and 40", Artificial Intelli
gence, 1984,23.29~568.

‘141 lai, T. H., Sprague, A. Pe:formance of parallel branch-and-bound algorithms. IEEE Transsctions ¢n Computers,
1985, C-34(10) ; 962~ F64.

[15] Rao, V.N., Zhang, W. Building heaps in parallel. Information Process.ng Letters. 1901 .57, 356~-358.

[16] Pinotti, M. C., Puccl, G. Parallel algorithms for pricrity queus operations. Theeretizal Computer Science, 1995,148:

C 171~ 180

[1¥] Carlsson, S., Chen, . , Mattsson (. Heaps with bits. Theoretical Computer Science, 1996,164.1~12,

[18] VYang, M. K., Das, C. R. Evaluztion of a parallel branch-and-bound algorithm on a cless of multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 1994,5¢1),74~§6.

[18] Chen Guo-liang. Design and Analysis of Parallel Algorithms. Beijing. Higher Edueation Press, 1884 (in Chinsse).

B e 3T 8 3k SO R
[12] RH%R BHER,RU. THhES S RREE. SF2%H,2000,11¢7), 98-~ 989,
[19] BRER.FEHEEIT SR B3 HERTHEM, 1904,

LFRRSHERRGF T RFAREE
AEHE, GTART RER

"CEAGKE HEYA.LE BE 2640050,
HOEBEEALY HHNMESTIEE . €% 410 230027

BE: pHRARLZARBES RN AR RL — B/ EMD AL RBET S AL 8TV HAX A
MERRE-BATSHERT L E TEFTNELARA TR Q0/pthlogp) 27 p AT HGEBRR L B
VROEEHE m ARSTEFHEL A8 BUHRAEABRIT A p 26, T PRAM-EREW L — 4
WH—BATSHTREE B LB T T ap2 BN E SR AHNER R AT ORRRLE £ 5
HOr B OFMAEBETHEMTBSER,

KRN FHRR; L5, PRAM-EREW; #4783 008 %

REFERFES . TP301 THARINES A

FBCERAEIFATET http:/ www. jos. org. cn

