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Abstract It is proved that there are r.e. degrees a and ¢ such that [¢]<[a] and [b]5[c] for any r.e. de-
gree b<1 a, where [a] is an element of R/M, the quotient of the recursively enumerable degrees R modulo
the cappable degrees M.
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1 Introduction

Ambos-Spies, Jockusch, Shore and Soare!’ proved that M, the set of all the cappable r.e. degrees, is an
ideal in R; that NC, the set of all the noncappable r.e. degrees, is a filter in R; and that NC=PS, the set of all
the promptly simple degrees. We have a quotient R/M of the r.e. degrees R modulo the cappable degrees M.
An element in R/M is denoted by [a], the equivalence class of some r. e. degree a under the equivalence relation
~, where a~b iff

J ey c;EM@Ue,=bUe,).
Given any [a],[bJER/M, [a]<[b] if there is an r.e. degree ¢EM such that a<blUe. [a]<[b] if [a]<[b]
and [b]< [a]. Let [a]V [b] denote the least upper bound of [a] and [b]. It is easy to prove that R/M is an
upper semilattice, and [a]V [b]=[aUb]. Schwarz® proved the downward density theorem in R/M. Ambos-
Spies (quoted in Ref. [3]) commented that the downward density theorem in R/M follows directly from the
Robinson’s splitting theorem and the fact that NC=LC, the set of all the r.e. degreesswhich cup to 0' by low
r.e. degrees.

By the definition of <, given any r.e. degrees a and ¢, if ¢<{a then [¢]<[a]. Given any [a] and [c¢]€
R/M such that [e]=<[a], there is an r.e. degree b€ [a] such that ¢<{tb. In this paper, we shall show that
there are r.e. degrees a and ¢ such that [¢]<[a] and for any r.e. degree b<{ra, [b]#[c].

Our notation is standard, as described by Soare!), A number z is unused at stage s+1 if 2=>s is greater
than any number used so far in the construction. If the qracle is a join of two sets, we assume that the use is
computed on the two sets separately, i.e., F{{ADPE[ (¥(2)+1);2)=TA[ Y () +DPE[ (¥ () +1);x),
where 7(x) is the use of I'(AE;x). If ¥(x) moves to an unused number at stage s+1, then ¥(z') moves for all
z' 2z, maintaining their order, to unused numbers. All use functions are assumed to be increasing in argument

and nondecreasing in the stages.

* This research is supported by the National Natural Science Foundation of China (B # B & B 4 2 &, No. 69673017).
SUI Yue-fei was born in 1963. He received the Ph. D. degree in mathematics from the Institute of Software, the Chinese
Academy of Sciences in 1988. He is a professor of the Institute of Software, the Chinese Academy of Sciences. His current
research interests include recursion theory, theory of computability, complexity of computation, and rough set theory.

Manuscript received 1998-07-03, accepted 1998-12-15.

© HEFRES AT http:/ www. jos. org. cn




— 746 — Journal of Software ¥4 ¥ 2000,11(6)

2 Main Theorem, Its Requirements and the Priority Tree

Theorem 2. 1. There exist r.e. degrees a and ¢ such that (¢]<[a], and for any r.e. degree b<<ta, [b]#
el
Proof. We shall construct r. e. sets A,C,B,E and define a recursive functional I" such that B and E are a
minimal pair, C=I'(A@E), and the construction will satisfy for every ¢ € w the following requirements:
P, . BFw—W,, )
M, :Z,(B)=Z.(E)= [, total [ <1,
R D=, (AXC=Y¥,(DPUHD,=8.(CPV.)—~+degr (U.) ENCV degr (V.)ENC,
where {(D,,U.,V,,®.,¥.,8,)} is a standard enumeration of all such sextuples (D,U,V,®,¥,8) that D,U,V
are r.e. sets and 9,¥,@ are recursive functionals.
By NC=PS and the promptly simple degree theorem!'), ‘we can decompose &, into the following infinitely
many subrequirements: for every /, ;€ w, )
R..i:D.=.(A)&C=¥.(D.PUH&D,=86,.(CHV.)
&|W, | =003 23 s EW. oo RU..[x #U..p [ 2),

Roeiyr VRL&| W[ =00 =3 33 t(YEW, 0 BV [yF# V., wl¥)s
where p,,q.; are recursive functions defined in the construction to show the prompt simplicity of U, and V,,
respectively.

The priority tree T is a subtree of A<“, where A={0,1,s,g,w}. We define an order << on T as follows:

a<faC AVI tCa,f3 a,b€E A(r” alalir” bS fa<<sb),
where 0<,1,8< g <aw. ’

Given any node a€ T, let S, be the re'iquirement asdigned to a and T. be the set of the remaining require-
ments that should be assigned to nodes 2a. Let S, be the requirement in 7", with highest priority under a given
linear order of all the requirements. We say that a is a strategy for S.or an S-strategy. T.is defined inductively
as follows: Let T,=({%2,, #,, &.: e€ w).

Case 2.1. S,=.#.. Thena” 0, a” 1ET, and set Tu- o=T.—{S.} =T%- 13

Case 2.2. S,=%. Thena” 0, a” 1€T, and set To =T . U{FK.i:i€ @} — (8.}, To- 1=T.—{S.};

Case 2.3. S.=%.;,. Thena" s, a” g, a" wET, and set To- g=T - w=T.—{Sa}» Tn'g=Tr(l)U {(FKesijij
Cw)— ({F. i :i' Ew} U {Sewr»Se: Seis not an R-strategy));

Case 2. 4. S.=%,. Thena™ w, a” s€ET, and set To- w=To- g=Ta—{S.};

Case 2.5. S.=...,,; Thena” s, a” wET, and set To-g=To- w=Ta—{S:}»
where .

max 3" gCa(S;=..) if S.=Z...;
O nax Ba(S,=R) i S=.
Let 8,4, be the last node we visit at stage s+1. At any stage s+1 we define the length of agreement;
max{z.¥ y<z(Z, (E;y»)=2Z2,,(B;y)v)} if S,=.4,
sy max{x:V y<z(D,.,(y)=P..(4,;y)
&C.(y)=", (D, . DU...;»
&D, (y)=0,,(CPV...;»)}} if S,==..
We assume that /(a,0)=0 for every a€T.
s+1 is an a-stage if a=4,+, and there is no open é-gap for any £ with t(§)CaC¥¢; 541 is a-expansionary if

s+1 is an a-stage and [(a,s) >[(a,t) for every a-stage t+1<s. ais initialized at stage s+1 if every parameter
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associated with a is set to be undefined.

3 Basic Modules

For every e,x,s, we shall use ¢.,(x),¢...(x) and 6.,(x) to denote u(A,;e,x,5),u(D. ,PU. ses2,s5) and
u(CEPV.. ;e,x,s), respectively.

To satisfy &2, let 7 be a strategy for &2,.. At any 7-stage s+ 1, if there is a follower z of @ such that z€
W.,, then we attempt to enumerate z in B.

The basic module for . is the usual minimal pair strategy. Let § be a strategy for .#,. We shall preserve
at least one side of these computations =, ,(B)[{(£,5),5..,(E)[(£,s5) for any é-expansionary stage s+ 1.

To satisfy Z....;» let a be a strategy for Z....;. Then there is a strategy f for Z. ., such that r(a)=p" gCa.
We shall define a recursive function p. to show the prompt simplicity of U, and a recursive function pea to
show the prompt simplicity of V..

At any 7(f)-stage s+ 1, if there is an x such that xEW,,—W, ., and there is no S-gap at the last S-stage,
where 5" +1<Cs is the last r(#)-stage, then open a B-gap, and if there is a y and a follower z, of a such that

(3.1) yEW,,—W, ., where 5"+ 1<s is the last 8~ g-stage,

(3. 2) there is no a-gap at the last a-stage, and

(3.3 LT (B)s5)>20s e (z)<zy 2.&C,» and 0., (¢ (2)) <y
then open an a-gap. Enumerate ¥,(z,) in A, and move 7,,,(z.) to an unused number.

Wait for the next r(3)-expansionary stage, say t+1>s. If D.,[¢.,(z.)=D..[¢...(z.)» then enumerate z,in
C, enumerate ¥, (z.) in E and wait for the next r(8)-expansionary stage u+ 1>>¢. Then close the f-gap, U...[ ¢...
(2)FU. [ e (22) s define pep (s)=u, and . ; is satisfied at (f) unless r(B) is initialized afterwards. In this
case, a is initialized.

If D[ ¢, (z)FE D, [ ¢, (2z.)» then close the a-gap and the S-gap, define pow (s) =t pes (s)=t, and V..,
[0 ez FEV [0 (es(za)) s iven s Vo [yFE V. [ yi and ..., is satisfied at v(a) unless 7(a) is initialized af-
terwards.

If there is a f-stage at stage s+ 1 and there are no such a y and a z., then at the next r(f)-expansionary
stage, say t+1>>s, close the B-gap, and define p.s (s)=¢.

There is a conflict between strategies. Let & be a strategy for .#, , let 8 be a strategy for Z..,; such that r
(B)CTE" 0= f. To satisfy a P-strategy 708" g, at any 7-stage s-+1, if 7 attempts to enumerate a follower z of
7in B, then there is a #-gap and s+ 1 may not be a §-expansionary stage. To cope with it, at any 7-stage s+1,
if there is a follower z of 7 such that =€ W, and 5+ 1 is §-expansionary then enumerate z in B; otherwise, de-
fine an auxiliary function £:7—T as follows: £(7)=§&. At the next é-expansionary stage t+1>>s5, enumerate z
in B.

Similarly, to solve the conflict between strategies for Z, and .#, , enumerate some 7.(z,) in E by a strate-

gy for ..
4 Construction

Stage s=0: Set A;=B,=/J and initialize every node a€ T

Stage s+1: Stage s+ 1 consists of at most s-many substages, sis. .. s5.5. ... At substage 5. we visit node «
and do the following actions according to what strategy « is, and either 8,4, is defined at s. or the next node we
shall visit at the next substage is defined, say n(a). If |n(a)|<(s, then go to substage sa. If 8,4, is defined or

|n(a)|=s, then s.is the last substage of stage s+1. At the end of stage s+ 1, initialize every strategy ¥'>8,4,
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with ¥ $§,;, and go to stage s+2.

Substage s.: The procedure runs according to what strategy « is.

Case 4.1. Let a be a strategy for &2,. lf &2, is satisfied, i.e. , there is a follower y of @, such that y€W,,
N B,, then go to a” s; otherwise, if there is no follower of a, then assign the least unused number to be a fol-
lower of a, go to a” wj; if there is a follower y of @ such that y& W, ,, then go to «” w; if there is a follower y
of a such that y&€ W, ,, then let 8.1, =a. Initialize every strategy ' >>a and see whether s+1 is #-expansionary
for every .#¢-strategy 8 with 8~ 0Za. If yes, then enumerate y in B; otherwise, define %(a)=f for the largest
# -strategy B such that §° 0=« and s+1 is not f-expansionary.

Case 4, 2. Let a be a strategy for &%,. If s+1 is a-expansionary and there is a strategy g for some Z,,,;such
that t*(8)=a and 8 enumerated some element ¥,(z4) in A at the last S-stage ¢+ 1, where zzis a follower of 8,
then let the 8-gap be opened via some y€ W,, and the t{#)-gap be opened via some x EW,,. If D,.[dp,(25)=
D, [¢s..(zs), then let 6,,,=7, and see whether.s+l is §-expansionary for every . # -strategy £ with £~ 0 Ca.
If yes, then enumerate z;3 in C; enumerate ¥,(zg) in E, move 7.4, (25) to the least unused number; otherwise,
define £(a) =¢ for the largest _#-strategy § such that £~ 0Ca and 541 is not é-expansionary. If D, [ ¢s.(zs)#
D...[¢s.(zs)» then close the r(8)-gap and the f-gap, define p.(¢') =s for every ¢' <t with p.,(¢') } and p.p (£
=5 for any "<t with peg, (") 4. I V. [y#V. [y, then &, ,is satisfied at () unless £(#) is initialized.

If s+1 is a-expansionary and there is a strategy f such that (8) =a, there is a f-gap via some x and there
is no element enumerated in A by any strategy % with (%) =8 at the last 3-stage t+1, then close the 8-gap, de-
fine p.(¢')=s for any ¢'<t with p., () 4. H U, [27U..[x, then Z., is satisfied at « unless « is initialized.

If there is a strategy § for Z..; such that r(8)=a, 4., is not satisfied at a; there is an x such that x€W,,,
—W,.» where s’ +1<(s5 is the last a-stage; there is no strategy & with «C k(&) CBCE#; and there is no §-gap at
the last B-stage, then let 8 be the least one and open a B-gap. If there is a strategy % for &, , such that
t(g)=8" g, F..;is not satisfied at (3} and there are a y and a follower z, of % such that

(4.1) yeW,,—W,.», where s"+1<Cs is the last 8~ g-stage,

(4. 2) there is no 7-gap at the last #-stage,

(4. 3) there is no strategy & such that fCE(E)CTHCE,

(4. 4 {(a,5)>2y, 2,&C,, and

(4.5) ¢ (2)<z, O, (. (2))<y,
then let % be the least one, open an §-gap; enumerate 7,{z;) in A; move 7,,,(z,;) to the least unused number and
initialize every strategy ¥ >7. If there is no such 7, then go to 8~ g.

If s+1 is e-expansionary and there is no such £, then go to a” 0; otherwise, go to a” 1.

Case 4. 3. Let a be a strategy for Z. .. If Z. ;s satisfied at t(a), then go to @~ s; otherwise, go to a” w.

Case 4. 4. Let a be a strategy for Z%. ;. If ., ;is satisfied at r(a), then go to a” s; otherwise, if there is
no follower of @, then assign the least unused number to be a follower of a, go to ™ w.

Case 4.5. Let @ be a strategy for .#,. If s+1 is a-expansionary and there is a strategy 7 such that 2(7)=
a, then

(4. 6) if s+1 is é-expansionary for every .#-strategy § with £~ 0Ca, then if 7 is a S7-strategy and 7 at-
tempted to enumerate some y in B at the last 7-stage, then enumerate y in Bj if % is an F-strategy and 7 at-
tempted to enumerate 7,(z4) in E for some zg at the last -stage, then enumerate 7,(zp) in E;

(4. 7) otherwise, let &,4;=a, define £(7) =§, where £ is the largest .#-strategy such that £~ 0Ca and s+
1 is not &-expansionary.

If s+1 is a-expansionary and there is no such 7, then go to @~ 0; otherwise, go to a” 1.

This ends the description of the construction.
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§ Verification

Let d=lim infd, be the true path., We prove the following lemmas inductively on aC3.

s

Lemma 5. 1. If ais a strategy for &, ;and f is a strategy for &, such that t(e)=8" gCaC4, then &£, ;
is satisfied at 7(a) eventually, and « enumerates finitely many elements in A.

Proof. Let s, be the least a-stage after which « is not initialized. Let z. be a follower of « at s,.

Assume that &, ., is not satisfied at r(a). Then W,and W, are infinite, and &,(A),%.(D.DU.) and 6.(CH
V.) are total. Since there are infinitely many r(3)-stages and r(a)-gaps, we know that there are =,y and a stage
s+1>>5, such that (4.1)~ (4. 5) are satisfied and 7,(z.) is enumerated in A.

At the next r(8)-expansionary stage t+1,D,,[¢. . (z.) #D,.[¢...(2.); otherwise, z,is enumerated in C
eventually before the next r(f8)-expansionary stage, say «+1>>¢. And by the initialization there is no element
<y, (z.) enumerated in D,, so U, [ .., (2.)FZU, [ ¢ (2, i.e. s ., would be satisfied at r(3) and 8~ sC4, a
contradiction. By the initialization, there is no element <C8,.,(¢. ,(z,)) enumerated in C between s and ¢, so V.,
[y#V..[v, and ., , is satisfied at r(a), a contradiction.

Therefore, &%, ,,, is satisfied at t(a) eventually and @ enumerates at most one element in A after s,.

Lemma 5. 2. If aC ¢ is a strategy for &Z,, then &2, is satisfied eventually.

Proof. Let s, be the least e-stage after which « is not initialized. Let y be the follower of a at s,.

Assume that P, is not satisfied, i.e. » B=w—W,. If y&W,, then &, is satisfied, a contradiction. Assume
that there exists an a-stage s+ 12=s, such that y€W,,. If s+1 is é-expansionary for every .#-strategy & with
£” 0Ca, then vy is enumerated in B at s+ 1 and &2, is satisfied, a contradiction; otherwise, for every # -strate-
gy § with £~ 0Ca, there is a -expansionary stage s:+ 1 such that no element is enumerated in E by any 72§
between s:+1 and the stage when v is enumerated in B. Then, y is enumerated in B at s:+1 for the .#-strate-
gy & with least length and &£ 0= e and &2, is satisfied. A contradiction.

Therefore, 52, is satisfied eventually.

Lemma 5. 3. If «C¢ is a strategy for .#,, then .. is satisfied.

Proof. Let s, be the least a-stage after which « is not initialized.

Assume that f, is total. To recursively compute f.(x) for any given z, find the least a-expansionary stage
s+12=s5, such that {(a,s)>x, and we claim that f,(x)=/F,.(z).

We now claim that at any stage t+1>>s, at least one of the two computations holds.

For a contradiction, suppose this fails at some least stage t+1>>5, say, via a number z entering E or B.
Then there is a stage <(t after the last a-expansionary stage when an element is enumerated in B or E, and one
of the two computations is distroyed. Let t,+ 1<t be the last a-expansionary stage.

If = enters E and destroys the remaining computation, then z enters E by an Z-strategy r* () and
z=Y,(2z3), where z;is a follower of § at stage t+1. If z?(#)=a” 0, then by the definition of k, there is no ele-
ment <'f, enumerated in B between ¢t,+1 and t+1, a contradiction; if t?(8)>>e" 0 and r*(8)Pa” 0, then by
the initialization, z>¢,+12a.., (z), a contradiction. If *{(8) " 0 <{a and r*(8) "~ 0%a, then a is initialized after
s50» a contradiction to the choice of s,. The last possibility is that r°(8) * 0Ca. In this case, at the last 3-stage,
say t"4+1, ¥+(zs) was enumerated in A and ¢+ 1 is the next r?()-expansionary stage, i.e. , t"=t,. Hence, 7,
(z3)>t., since ¥»(zsz) moved to an unused number at t"+1. A contradiction.

If z enters B and destroys the remaining computation, then z enters B by a -strategy 8. By the initializa-
tion and the choice of s,, #/—=a" 0. By the definition of the auxiliary function %, z is enumerated in B at t+1

only if there is no element <Ct, enumerated in E between ¢{,+1 and t+1. Therefore, z cannot be enumerated in
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B by Bat t++1. a contradiction.
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