Relation of \leq in R/M and \leq_T in R.

SUI Yue-fei

(Institute of Software The Chinese Academy of Sciences Beijing 100080) E-mail: svf@ox.ios.ac.cn

Abstract It is proved that there are r.e. degrees a and c such that [c] < [a] and $[b] \ne [c]$ for any r.e. degree $b \le_T a$, where [a] is an element of R/M, the quotient of the recursively enumerable degrees R modulo the cappable degrees M.

Key words Recursively enumerable degree, weak truth table reduction.

1 Introduction

Ambos-Spies, Jockusch, Shore and Soare [1] proved that M, the set of all the cappable r.e. degrees, is an ideal in R; that NC, the set of all the noncappable r.e. degrees, is a filter in R; and that NC=PS, the set of all the promptly simple degrees. We have a quotient R/M of the r.e. degrees R modulo the cappable degrees M. An element in R/M is denoted by [a], the equivalence class of some r.e. degree a under the equivalence relation \sim , where a \sim b iff

$$\exists c_1, c_2 \in M(a \cup c_1 = b \cup c_2).$$

Given any $[a], [b] \in R/M$, $[a] \leq [b]$ if there is an r.e. degree $c \in M$ such that $a \leq b \cup c$. $[a] \leq [b]$ if $[a] \leq [b]$ and $[b] \leq [a]$. Let $[a] \vee [b]$ denote the least upper bound of [a] and [b]. It is easy to prove that R/M is an upper semilattice, and $[a] \vee [b] = [a \cup b]$. Schwarz^[2] proved the downward density theorem in R/M. Ambos-Spies (quoted in Ref. [3]) commented that the downward density theorem in R/M follows directly from the Robinson's splitting theorem and the fact that NC = LC, the set of all the r.e. degrees which cup to 0' by low r.e. degrees.

By the definition of \leq , given any r.e. degrees a and c, if $c \leq a$ then $[c] \leq [a]$. Given any [a] and $[c] \in \mathbb{R}/\mathbb{M}$ such that $[c] \leq [a]$, there is an r.e. degree $b \in [a]$ such that $c \leq_T b$. In this paper, we shall show that there are r.e. degrees a and c such that $[c] \leq [a]$ and for any r.e. degree $b \leq_T a$, $[b] \neq [c]$.

Our notation is standard, as described by Soare^[4]. A number x is unused at stage s+1 if $x \geqslant s$ is greater than any number used so far in the construction. If the oracle is a join of two sets, we assume that the use is computed on the two sets separately, i.e., $\Gamma((A \oplus E) \cap (\gamma(x) + 1); x) = \Gamma(A \cap (\gamma(x) + 1) \oplus E \cap (\gamma(x) + 1); x)$, where $\gamma(x)$ is the use of $\Gamma(A \oplus E; x)$. If $\gamma(x)$ moves to an unused number at stage s+1, then $\gamma(x')$ moves for all $x' \geqslant x$, maintaining their order, to unused numbers. All use functions are assumed to be increasing in argument and nondecreasing in the stages.

Manuscript received 1998-07-03, accepted 1998-12-15.

[•] This research is supported by the National Natural Science Foundation of China(国家自然科学基金,No. 69673017). SUI Yue-fei was born in 1963. He received the Ph. D. degree in mathematics from the Institute of Software, the Chinese Academy of Sciences in 1988. He is a professor of the Institute of Software, the Chinese Academy of Sciences. His current research interests include recursion theory, theory of computability, complexity of computation, and rough set theory.

2 Main Theorem, Its Requirements and the Priority Tree

Theorem 2.1. There exist r.e. degrees a and c such that [c] < [a], and for any r.e. degree $b \le_T a$, $[b] \neq [c]$.

Proof. We shall construct r.e. sets A, C, B, E and define a recursive functional Γ such that B and E are a minimal pair, $C = \Gamma(A \oplus E)$, and the construction will satisfy for every $e \in \omega$ the following requirements:

$$\begin{split} &\mathscr{D}_{\epsilon}: B \neq \omega - W_{\epsilon}, \\ &\mathscr{M}_{\epsilon}: \Sigma_{\epsilon}(B) = \Sigma_{\epsilon}(E) = f_{\epsilon} \text{ total } \rightarrow f_{\epsilon} \leqslant_{\mathsf{T}} \varnothing, \\ &\mathscr{R}_{\epsilon}: D_{\epsilon} = \Phi_{\epsilon}(A) \& C = \Psi_{\epsilon}(D_{\epsilon} \oplus U_{\epsilon}) \& D_{\epsilon} = \Theta_{\epsilon}(C \oplus V_{\epsilon}) \rightarrow \deg_{\mathsf{T}}(U_{\epsilon}) \in \mathsf{NC} \lor \deg_{\mathsf{T}}(V_{\epsilon}) \in \mathsf{NC}, \end{split}$$

where $\{(D_{\epsilon}, U_{\epsilon}, V_{\epsilon}, \Phi_{\epsilon}, \Psi_{\epsilon}, \Theta_{\epsilon})\}$ is a standard enumeration of all such sextuples $(D, U, V, \Phi, \Psi, \Theta)$ that D, U, V are r. e. sets and Φ, Ψ, Θ are recursive functionals.

By NC=PS and the promptly simple degree theorem^[1], we can decompose \mathcal{R}_{ϵ} into the following infinitely many subrequirements: for every $i, j \in \omega$,

$$\begin{split} \mathscr{R}_{\epsilon,i} : D_{\epsilon} = & \Phi_{\epsilon}(A) \& C = \Psi_{\epsilon}(D_{\epsilon} \bigoplus U_{\epsilon}) \& D_{\epsilon} = \Theta_{\epsilon}(C \bigoplus V_{\epsilon}) \\ \& |W_{i}| = & \infty \rightarrow \exists x \exists s (x \in W_{i,\text{at}} \& U_{\epsilon,i} \lceil x \neq U_{\epsilon,\rho_{\epsilon}(i)} \lceil x), \\ & \vdots \\ \mathscr{R}_{\epsilon,i,j} : \neg \mathscr{R}_{\epsilon,i} \& |W_{j}| = & \infty \rightarrow \exists y \exists t (y \in W_{j,\text{at}} \& V_{\epsilon,i} \lceil y \neq V_{\epsilon,q_{\epsilon,j}(i)} \lceil y), \end{split}$$

where $p_{\epsilon}, q_{\epsilon,i}$ are recursive functions defined in the construction to show the prompt simplicity of U_{ϵ} and V_{ϵ} , respectively.

The priority tree T is a subtree of $\Lambda^{<\omega}$, where $\Lambda = \{0,1,\mathbf{s},\mathbf{g},\mathbf{w}\}$. We define an order < on T as follows: $\alpha < \beta \leftrightarrow \alpha \subset \beta \lor \exists \ \tau \subseteq \alpha, \beta \exists \ a,b \in \Lambda(\tau \hat{\ } a \subseteq \alpha \& \tau \hat{\ } b \subseteq \beta \& a <_{\Lambda} b)$,

where $0 <_{\Lambda} 1$, $s <_{\Lambda} g <_{\Lambda} w$.

Given any node $\alpha \in T$, let S_o be the requirement assigned to α and T_o be the set of the remaining requirements that should be assigned to nodes $\supseteq \alpha$. Let S_o be the requirement in T_o with highest priority under a given linear order of all the requirements. We say that α is a *strategy* for S_o or an S-strategy. T_o is defined inductively as follows: Let $T_\lambda = \{\mathscr{P}_o, \mathscr{M}_o, \mathscr{R}_o: e \in \omega\}$.

Case 2.1. $S_a = \mathcal{M}_e$. Then $\alpha \cap 0$, $\alpha \cap 1 \in T$, and set $T_{a \cap 0} = T_a - \{S_a\} = T_{a \cap 1}$;

Case 2.2. $S_a = \mathcal{R}_e$. Then $\alpha \cap 0$, $\alpha \cap 1 \in T$, and set $T_{a \cap 0} = T_a \cup \{\mathcal{R}_{e,i} : i \in \omega\} - \{S_a\}$, $T_{a \cap 1} = T_a - \{S_a\}$;

Case 2.3. $S_a = \mathcal{R}_{\epsilon,i}$. Then $\alpha \cap s$, $\alpha \cap g$, $\alpha \cap w \in T$, and set $T_{a \cap S} = T_{a \cap W} = T_a - \{S_a\}$, $T_{a \cap g} = T_{\epsilon(a)} \cup \{\mathcal{R}_{\epsilon,i,j}: j \in \omega\} - (\{\mathcal{R}_{\epsilon,i}: i' \in \omega\} \cup \{S_{\epsilon(a)}, S_{\epsilon}: S_{\epsilon} \text{ is not an } \mathcal{R}\text{-strategy}\});$

Case 2.4. $S_a = \mathcal{P}_c$. Then $\alpha \circ \mathbf{w}$, $\alpha \circ \mathbf{s} \in T$, and set $T_a \cdot \mathbf{w} = T_a \cdot \mathbf{s} = T_a - \{S_a\}$;

Case 2.5. $S_a = \mathcal{R}_{\epsilon,i,j}$. Then $\alpha \circ s$, $\alpha \circ w \in T$, and set $T_{\alpha \circ s} = T_{\alpha \circ w} = T_{\alpha} - \{S_a\}$,

where

$$\tau(\alpha) = \begin{cases} \max \beta \hat{\ } g \subseteq \alpha(S_{\beta} = \mathscr{R}_{\epsilon,i}) & \text{if } S_{\bullet} = \mathscr{R}_{\epsilon,i,j} \\ \max \beta \subseteq \alpha(S_{\beta} = \mathscr{R}_{\epsilon}) & \text{if } S_{\bullet} = \mathscr{R}_{\epsilon,i}. \end{cases}$$

Let δ_{s+1} be the last node we visit at stage s+1. At any stage s+1 we define the length of agreement:

$$l(\alpha,s) = \begin{cases} \max\{x: \forall \ y < x(\Sigma_{\epsilon,i}(E_s; y) = \Sigma_{\epsilon,i}(B_s; y) \neq 0)\} & \text{if } S_e = \mathcal{M}_{\epsilon} \\ \max\{x: \forall \ y < x(D_{\epsilon,i}(y) = \Phi_{\epsilon,i}(A_s; y) \\ & \&C_s(y) = \Psi_{\epsilon,i}(D_{\epsilon,i} \oplus U_{\epsilon,i}; y) \\ & \&D_{\epsilon,i}(y) = \Theta_{\epsilon,i}(C_s \oplus V_{\epsilon,i}; y))\} & \text{if } S_e = \mathcal{R}_{\epsilon}. \end{cases}$$

We assume that $l(\alpha,0)=0$ for every $\alpha \in T$.

s+1 is an α -stage if $\alpha \subseteq \delta_{s+1}$ and there is no open ξ -gap for any ξ with $\tau(\xi) \subseteq \alpha \subseteq \xi$; s+1 is α -expansionary if s+1 is an α -stage and $\ell(\alpha,s) > \ell(\alpha,t)$ for every α -stage $\ell+1 \le s$. ℓ is initialized at stage s+1 if every parameter

associated with α is set to be undefined.

3 Basic Modules

For every e,x,s, we shall use $\varphi_{\epsilon,s}(x),\psi_{\epsilon,s}(x)$ and $\theta_{\epsilon,s}(x)$ to denote $u(A_s;e,x,s),u(D_{\epsilon,s}\oplus U_{\epsilon,s};e,x,s)$ and $u(C_s\oplus V_{\epsilon,s};e,x,s)$, respectively.

To satisfy \mathscr{P}_{ϵ} , let η be a strategy for \mathscr{P}_{ϵ} . At any η -stage s+1, if there is a follower z of α such that $z \in W_{\epsilon,s}$, then we attempt to enumerate z in B.

The basic module for \mathcal{M}_{ϵ} is the usual minimal pair strategy. Let ξ be a strategy for \mathcal{M}_{ϵ} . We shall preserve at least one side of these computations $\Sigma_{\epsilon,s}(B_s)\lceil l(\xi,s), \Sigma_{\epsilon,s}(E_s)\lceil l(\xi,s) \rceil$ for any ξ -expansionary stage s+1.

To satisfy $\mathcal{R}_{\epsilon,i,j}$, let α be a strategy for $\mathcal{R}_{\epsilon,i,j}$. Then there is a strategy β for $\mathcal{R}_{\epsilon,i}$ such that $\tau(\alpha) = \beta \hat{\ } g \subset \alpha$. We shall define a recursive function $p_{\tau(\beta)}$ to show the prompt simplicity of U_{ϵ} and a recursive function $p_{\tau(\alpha)}$ to show the prompt simplicity of V_{ϵ} .

At any $\tau(\beta)$ -stage s+1, if there is an x such that $x \in W_{i,s} - W_{i,s'}$, and there is no β -gap at the last β -stage, where $s'+1 \le s$ is the last $\tau(\beta)$ -stage, then open a β -gap, and if there is a y and a follower z_a of α such that

- (3.1) $y \in W_{j,s} W_{j,s}$, where $s'' + 1 \le s$ is the last β g-stage,
- (3.2) there is no α -gap at the last α -stage, and
- (3.3) $l(\tau(\beta),s)>z_a$, $\psi_{e,s}(z_a)< x$, $z_a\notin C_s$, and $\theta_{e,s}(\psi_{e,s}(z_a))< y$,

then open an α -gap. Enumerate $\gamma_s(z_a)$ in A_s and move $\gamma_{s+1}(z_a)$ to an unused number.

Wait for the next $\tau(\beta)$ -expansionary stage, say t+1>s. If $D_{\epsilon,i}\lceil\psi_{\epsilon,i}(z_o)=D_{\epsilon,i}\lceil\psi_{\epsilon,i}(z_o)$, then enumerate z_o in C, enumerate $\gamma_{\epsilon}(z_o)$ in E and wait for the next $\tau(\beta)$ -expansionary stage u+1>t. Then close the β -gap, $U_{\epsilon,i}\lceil\psi_{\epsilon,i}(z_o)\neq U_{\epsilon,u}\lceil\psi_{\epsilon,i}(z_o)$, define $p_{\tau(\beta)}(s)=u$, and $\mathcal{R}_{\epsilon,i}$ is satisfied at $\tau(\beta)$ unless $\tau(\beta)$ is initialized afterwards. In this case, α is initialized.

If $D_{\epsilon,i}\lceil \psi_{\epsilon,i}(z_o) \neq D_{\epsilon,i}\lceil \psi_{\epsilon,i}(z_o)$, then close the α -gap and the β -gap, define $p_{\tau(o)}(s) = t$, $p_{\tau(\beta)}(s) = t$, and $V_{\epsilon,i}\lceil \theta_{\epsilon,i}(\psi_{\epsilon,i}(z_o)) \neq V_{\epsilon,i}\lceil \theta_{\epsilon,i}(\psi_{\epsilon,i}(z_o))$, i. e., $V_{\epsilon,i}\lceil y \neq V_{\epsilon,i}\lceil y$; and $\mathcal{R}_{\epsilon,i,j}$ is satisfied at $\tau(\alpha)$ unless $\tau(\alpha)$ is initialized afterwards.

If there is a β -stage at stage s+1 and there are no such a y and a z_s , then at the next $\tau(\beta)$ -expansionary stage, say t+1>s, close the β -gap, and define $\rho_{\tau(\beta)}(s)=t$.

There is a conflict between strategies. Let ξ be a strategy for $\mathcal{M}_{\epsilon'}$, let β be a strategy for $\mathcal{M}_{\epsilon,i}$ such that τ $(\beta) \subset \xi^{\wedge} 0 \subseteq \beta$. To satisfy a \mathscr{P} -strategy $\eta \supset \beta^{\wedge} g$, at any η -stage s+1, if η attempts to enumerate a follower z of η in B, then there is a β -gap and s+1 may not be a ξ -expansionary stage. To cope with it, at any η -stage s+1, if there is a follower z of η such that $z \in W_{\epsilon',i}$ and s+1 is ξ -expansionary then enumerate z in B; otherwise, define an auxiliary function $k: T \to T$ as follows: $k(\eta) = \xi$. At the next ξ -expansionary stage t+1 > s, enumerate z in B.

Similarly, to solve the conflict between strategies for \mathcal{R}_{ϵ} and $\mathcal{M}_{\epsilon'}$, enumerate some $\Upsilon_{\epsilon}(z_{\epsilon})$ in E by a strategy for \mathcal{R}_{ϵ} .

4 Construction

Stage s=0: Set $A_0=B_0=\emptyset$ and initialize every node $\alpha \in T$.

Stage s+1: Stage s+1 consists of at most s-many substages, $s_{\lambda}, \ldots, s_{\sigma}, \ldots$. At substage s_{σ} we visit node α and do the following actions according to what strategy α is, and either δ_{i+1} is defined at s_{σ} or the next node we shall visit at the next substage is defined, say $n(\alpha)$. If $|n(\alpha)| < s$, then go to substage $s_{n(\alpha)}$. If δ_{i+1} is defined or $|n(\alpha)| = s$, then s_{σ} is the last substage of stage s+1. At the end of stage s+1, initialize every strategy $\gamma' > \delta_{i+1}$

with $\gamma' \supset \delta_{s+1}$ and go to stage s+2.

Substage s_{α} : The procedure runs according to what strategy α is.

Case 4.1. Let α be a strategy for \mathscr{P}_{ϵ} . If \mathscr{P}_{ϵ} is satisfied, i. e., there is a follower y of α , such that $y \in W_{\epsilon,i}$, then go to α s; otherwise, if there is no follower of α , then assign the least unused number to be a follower of α , go to α w; if there is a follower y of α such that $y \in W_{\epsilon,i}$, then go to α w; if there is a follower y of α such that $y \in W_{\epsilon,i}$, then let $\delta_{i+1} = \alpha$. Initialize every strategy $\gamma' > \alpha$ and see whether s+1 is β -expansionary for every \mathscr{M} -strategy β with β 0 $\subseteq \alpha$. If yes, then enumerate y in β ; otherwise, define $k(\alpha) = \beta$ for the largest \mathscr{M} -strategy β such that β 0 $\subseteq \alpha$ and s+1 is not β -expansionary.

Case 4. 2. Let α be a strategy for \mathcal{R}_{ϵ} . If s+1 is α -expansionary and there is a strategy β for some $\mathcal{R}_{\epsilon,i,j}$ such that $\tau^2(\beta) = \alpha$ and β enumerated some element $\mathcal{Y}_{\epsilon}(z_{\beta})$ in A at the last β -stage t+1, where z_{β} is a follower of β , then let the β -gap be opened via some $y \in W_{i,i}$ and the $\tau(\beta)$ -gap be opened via some $x \in W_{i,i}$. If $D_{\epsilon,i} \lceil \psi_{\beta,i}(z_{\beta}) = D_{\epsilon,i} \lceil \psi_{\beta,i}(z_{\beta}) \rceil$, then let $\delta_{i+1} = \beta$, and see whether s+1 is ξ -expansionary for every \mathcal{M} -strategy ξ with $\xi \cap 0 \subseteq \alpha$. If yes, then enumerate z_{β} in C; enumerate $\mathcal{Y}_{\epsilon}(z_{\beta})$ in E, move $\mathcal{Y}_{\epsilon+1}(z_{\beta})$ to the least unused number; otherwise, define $k(\alpha) = \xi$ for the largest \mathcal{M} -strategy ξ such that $\xi \cap 0 \subseteq \alpha$ and s+1 is not ξ -expansionary. If $D_{\epsilon,i} \lceil \psi_{\beta,i}(z_{\beta}) \neq D_{\epsilon,i} \lceil \psi_{\beta,i}(z_{\beta}) \rceil$, then close the $\tau(\beta)$ -gap and the β -gap, define $p_{\alpha}(t') = s$ for every $t' \leq t$ with $p_{\alpha,i}(t') \uparrow$ and $p_{\tau(\beta)}(t'') = s$ for any $t'' \leq t$ with $p_{\tau(\beta),i}(t'') \uparrow$. If $V_{\epsilon,i} \lceil \psi \neq V_{\epsilon,i} \lceil \psi \rangle$, then $\mathcal{R}_{\epsilon,i,j}$ is satisfied at $\tau(\beta)$ unless $\tau(\beta)$ is initialized.

If s+1 is α -expansionary and there is a strategy β such that $\tau(\beta) = \alpha$, there is a β -gap via some x and there is no element enumerated in A by any strategy η with $\tau(\eta) = \beta$ at the last β -stage t+1, then close the β -gap, define $p_{\alpha}(t') = s$ for any $t' \leq t$ with $p_{\alpha,s}(t') \uparrow h$. If $U_{\epsilon,t} \lceil x \neq U_{\epsilon,s} \rceil x$, then $\mathcal{R}_{\epsilon,t}$ is satisfied at α unless α is initialized.

If there is a strategy β for $\mathscr{R}_{\epsilon,i}$ such that $\tau(\beta) = \alpha$, $\mathscr{R}_{\epsilon,i}$ is not satisfied at α ; there is an x such that $x \in W_{i,i}$, where $s' + 1 \le s$ is the last α -stage; there is no strategy ξ with $\alpha \subset k(\xi) \subset \beta \subset \xi$; and there is no β -gap at the last β -stage, then let β be the least one and open a β -gap. If there is a strategy η for $\mathscr{R}_{\epsilon,i,j}$ such that $\tau(\eta) = \beta \cap \mathfrak{R}_{\epsilon,i,j}$ is not satisfied at $\tau(\eta)$ and there are a γ and a follower z_{η} of η such that

- (4.1) $y \in W_{j,s} W_{j,s''}$, where $s'' + 1 \le s$ is the last $\beta \cap g$ -stage,
- (4.2) there is no η -gap at the last η -stage,
- (4.3) there is no strategy ξ such that $\beta \subseteq k(\xi) \subseteq \eta \subseteq \xi$,
- $(4.4) l(\alpha,s) > z_n, z_n \in C_s$, and
- $(4.5) \ \psi_{e,s}(z_{\eta}) < x, \ \theta_{e,s}(\psi_{e,s}(z_{\eta})) < y,$

then let η be the least one, open an η -gap; enumerate $\Upsilon_s(z_{\eta})$ in A; move $\Upsilon_{s+1}(z_{\eta})$ to the least unused number and initialize every strategy $\Upsilon' > \eta$. If there is no such η , then go to $\beta \hat{g}$.

If s+1 is α -expansionary and there is no such β , then go to α° 0; otherwise, go to α° 1.

Case 4.3. Let α be a strategy for $\mathcal{R}_{\epsilon,i}$. If $\mathcal{R}_{\epsilon,i}$ is satisfied at $\tau(\alpha)$, then go to α s; otherwise, go to α w.

Case 4.4. Let α be a strategy for $\mathcal{R}_{\epsilon,i,j}$. If $\mathcal{R}_{\epsilon,i,j}$ is satisfied at $\tau(\alpha)$, then go to α s; otherwise, if there is no follower of α , then assign the least unused number to be a follower of α , go to α w.

Case 4.5. Let α be a strategy for \mathcal{M}_{ϵ} . If s+1 is α -expansionary and there is a strategy η such that $k(\eta) = \alpha$, then

(4.6) if s+1 is ξ -expansionary for every \mathcal{M} -strategy ξ with $\xi^{\hat{}}$ $0 \subseteq \alpha$, then if η is a \mathcal{P} -strategy and η attempted to enumerate some y in B at the last η -stage, then enumerate y in B; if η is an \mathcal{R} -strategy and η attempted to enumerate $\gamma_s(z_\beta)$ in E for some z_β at the last η -stage, then enumerate $\gamma_s(z_\beta)$ in E;

(4.7) otherwise, let $\delta_{s+1} = \alpha$, define $k(\eta) = \xi$, where ξ is the largest \mathcal{M} -strategy such that $\xi^{\hat{}} = 0 \subseteq \alpha$ and s+1 is not ξ -expansionary.

If s+1 is α -expansionary and there is no such η , then go to $\alpha^{\hat{}}$ 0; otherwise, go to $\alpha^{\hat{}}$ 1.

This ends the description of the construction.

5 Verification

Let $\delta = \liminf \delta$, be the true path. We prove the following lemmas inductively on $\alpha \subset \delta$.

Lemma 5.1. If α is a strategy for $\mathcal{R}_{\epsilon,i,j}$ and β is a strategy for $\mathcal{R}_{\epsilon,i}$ such that $\tau(\alpha) = \beta \hat{\ } g \subset \alpha \subset \delta$, then $\mathcal{R}_{\epsilon,i,j}$ is satisfied at $\tau(\alpha)$ eventually, and α enumerates finitely many elements in A.

Proof. Let s_0 be the least α -stage after which α is not initialized. Let z_a be a follower of α at s_0 .

Assume that $\mathcal{R}_{\epsilon,i,j}$ is not satisfied at $\tau(\alpha)$. Then W_i and W_j are infinite, and $\Phi_{\epsilon}(A)$, $\Psi_{\epsilon}(D_{\epsilon} \oplus U_{\epsilon})$ and $\Theta_{\epsilon}(C \oplus V_{\epsilon})$ are total. Since there are infinitely many $\tau(\beta)$ -stages and $\tau(\alpha)$ -gaps, we know that there are x, y and a stage $s+1>s_0$ such that $(4.1)\sim(4.5)$ are satisfied and $\Upsilon_i(z_{\epsilon})$ is enumerated in A.

At the next $\tau(\beta)$ -expansionary stage t+1, $D_{e,s}\lceil \psi_{e,s}(z_a) \neq D_{e,s}\lceil \psi_{e,s}(z_a)$; otherwise, z_a is enumerated in C eventually before the next $\tau(\beta)$ -expansionary stage, say u+1>t. And by the initialization there is no element $<\psi_{e,s}(z_a)$ enumerated in D_e , so $U_{e,s}\lceil \psi_{e,s}(z_a) \neq U_{e,u}\lceil \psi_{e,s}(z_a)$, i. e., $\mathcal{R}_{e,i}$ would be satisfied at $\tau(\beta)$ and $\beta \cap s \subset \delta$, a contradiction. By the initialization, there is no element $<\theta_{e,s}(\psi_{e,s}(z_a))$ enumerated in C between s and t, so $V_{e,s}\lceil y \neq V_{e,l}\lceil y$, and $\mathcal{R}_{e,i,j}$ is satisfied at $\tau(\alpha)$, a contradiction.

Therefore, $\mathcal{R}_{e,i,j}$ is satisfied at $\tau(\alpha)$ eventually and α enumerates at most one element in A after s_0 .

Lemma 5.2. If $\alpha \subset \delta$ is a strategy for \mathscr{D}_{ϵ} , then \mathscr{D}_{ϵ} is satisfied eventually.

Proof. Let s_0 be the least α -stage after which α is not initialized. Let y be the follower of α at s_0 .

Assume that P_{ϵ} is not satisfied, i. e., $B = \omega - W_{\epsilon}$. If $y \notin W_{\epsilon}$, then \mathscr{D}_{ϵ} is satisfied, a contradiction. Assume that there exists an α -stage $s+1 \geqslant s_0$ such that $y \in W_{\epsilon,i}$. If s+1 is ξ -expansionary for every \mathscr{M} -strategy ξ with $\xi^{\hat{}} = 0 \subseteq \alpha$, then y is enumerated in B at s+1 and \mathscr{D}_{ϵ} is satisfied, a contradiction; otherwise, for every \mathscr{M} -strategy ξ with $\xi^{\hat{}} = 0 \subseteq \alpha$, there is a ξ -expansionary stage $s_{\xi}+1$ such that no element is enumerated in E by any $\eta \supset \xi$ between $s_{\xi}+1$ and the stage when y is enumerated in E. Then, E is enumerated in E at E is enumerated in E to the E-strategy E with least length and E is satisfied. A contradiction.

Therefore, \mathcal{P}_{ϵ} is satisfied eventually.

Lemma 5.3. If $\alpha \subset \delta$ is a strategy for \mathcal{M}_{ϵ} , then \mathcal{M}_{ϵ} is satisfied.

Proof. Let s_0 be the least α -stage after which α is not initialized.

Assume that f_{ϵ} is total. To recursively compute $f_{\epsilon}(x)$ for any given x, find the least α -expansionary stage $s+1 \geqslant s_0$ such that $l(\alpha,s) > x$, and we claim that $f_{\epsilon}(x) = f_{\epsilon,s}(x)$.

We now claim that at any stage t+1>s, at least one of the two computations holds.

For a contradiction, suppose this fails at some least stage t+1>s, say, via a number z entering E or B. Then there is a stage < t after the last α -expansionary stage when an element is enumerated in B or E, and one of the two computations is distroyed. Let $t_{\alpha}+1 \le t$ be the last α -expansionary stage.

If z enters E and destroys the remaining computation, then z enters E by an \mathscr{R} -strategy $\tau^2(\beta)$ and $z=\gamma_t(z_\beta)$, where z_β is a follower of β at stage t+1. If $\tau^2(\beta)\supseteq\alpha^{\hat{}}$ 0, then by the definition of k, there is no element $< t_a$ enumerated in B between t_a+1 and t+1, a contradiction; if $\tau^2(\beta)>\alpha^{\hat{}}$ 0 and $\tau^2(\beta)\supseteq\alpha^{\hat{}}$ 0, then by the initialization, $z>t_a+1\geqslant\sigma_{e,t_a}(x)$, a contradiction. If $\tau^2(\beta)^{\hat{}}$ 0 $<\alpha$ and $\tau^2(\beta)^{\hat{}}$ 0 $\subseteq\alpha$, then α is initialized after s_0 , a contradiction to the choice of s_0 . The last possibility is that $\tau^2(\beta)^{\hat{}}$ 0 $\subseteq\alpha$. In this case, at the last β -stage, say t''+1, $\gamma_c(z_\beta)$ was enumerated in A and t+1 is the next $\tau^2(\beta)$ -expansionary stage, i.e., $t''\geqslant t_a$. Hence, $\gamma_t(z_\beta)>t_a$, since $\gamma_t(z_\beta)$ moved to an unused number at t''+1. A contradiction.

If z enters B and destroys the remaining computation, then z enters B by a \mathscr{P} -strategy β . By the initialization and the choice of s_0 , $\beta \supseteq \alpha \cap 0$. By the definition of the auxiliary function k, z is enumerated in B at t+1 only if there is no element $\langle t_a \rangle$ enumerated in E between t_a+1 and t+1. Therefore, z cannot be enumerated in

B by β at t+1, a contradiction.

References

- 1 Ambos-Spies K, Jockusch C G Jr, Shore R A et al. An algebraic decomposition of the recursively enumerable degrees and the coincidence of several classes with the promptly simple degrees. Transactions of the American Mathematical Society, 1984,281:109~128
- 2 Schwarz S. The quotient semilattice of the recursively enumerable degrees modulo the cappable degrees. Transactions of the American Mathematical Society, 1984,283:315~328
- 3 Jockusch C G Jr. Review of Schwarz. Mathematical Review, 1985,85i;3777
- 4 Soare R l. Recursively Enumerable Sets and Degrees, Q-series. Berlin: Springer-Verlag, 1987

R/M 中的 ≤ 5 R 中的 ≤ 7 的关系

眭跃飞

(中国科学院软件研究所 北京 100080)

摘要 证明存在递归可枚举图灵度 a 和 c 使得 c \leq a,并且对每个递归可枚举图灵度 b \leq $_{T}$ a, b \neq c,其中 a 是 R/M 中的一个元素,R/M 是递归可枚举图灵度集 R 模可盖图灵度集 M 的商.

关键词 递归可枚举度,弱真值表归约.

中图法分类号 TP301