I3SN1000-9825 Journal of Software 3 #F 23 2000,11(5):720~-726

Flexible Cooperative Transaction Model”

MO Qian LIZi-mu TAN Yu-song ZHOU Xing-ming

(School of Computer Science National University of Defence Technology Changsha 410073)

E-mail: doctor?@nudt. edu. cn

Abstract An advanced transaction model for CSCW applications —FCFM (flexible cooperative transaction
model) is presented in this paper. Firstly. the definition of cooperative transactions is given and the states of
them are specified. Secondly, the dependencies among cooperative transactions and those between cooperative
transactions and outside environments are specified in terms of states of cooperative transactions. Finally, the
serializability correctness criterion for the presented model is specified by state dependencies of cooperative
transactions. The main advantage of FCTM is that users can customize the states and state dependencies of co-
operative transactions to reflect the different requirements of CSCW applications.

Key words CSCW, transaction processing, dependency, serializability correctness criterion.

Traditional database transaction models are usually based on the assumption that numerous independent
short period transactions concurrently access a shared database and all the transactions have ACID properties.
Recent research has proved that traditional database transaction models and technologies can not support the
CSCW applications well. The new requirements in CSCW fields, such as supporting long period transaction.,
users interaction and cooperation, raise the need for introducing extended transaction models (ETMs).

To overcome the shortcoming of traditional database models and reflect the new requirements of transaction
processing for cooperative work environments, extended transaction models have been proposed. such as the
Open Nested Transaction Model'''2, the Sagas Model1, the CoAct Model™, ete.

No marter how suceessful all kinds of ETMs support their original systems, they only reflect some aspects
of the relations for a competitive cooperative environment. They are only subsers of relations of complex sys-
tems. One ETM proved to be correct in one application may not guarantee its correctness in another application,
Some restrictions required by one application may be unacceptable in another application. For example, the
Sagas Model can not guarantee database correctness in many banking applications , while the Nested Transaction
Model does not allow sharing of uncommitted data crucial in CAD/CAM applications. In a word, an effective
extended transaction model in a complex cooperative work environment should be flexible, which means that all

kinds of extended transaction processing mechanisms can be applied to reflect different application requirements.

» This research is supported by the National Natural Science Foundation of China (B R ASR B ¥ X £). MO Qian was
bern in June, 1972, He received his Ph. D. degtee in computer science from National University of Defense Technology in
1999, His research interest is distributed database systems. LI Zi-mu was born in 1371, He received his Ph. D. degree in com-
puter science from National University of Defense Technology in 1999. His research interest is distributed database systems.
TAN Yu-song was born in 1975. He is a Ph. D student at Department of Computer Science, National University of Defense
Technology. His research interest is distributed database systems. ZHOU Xing-ming was born in 1938, He is a professor and
docroral supervisor of the National University of Defense Technology. [lis current research areas include super-computer tech-
nology and distributed database systcms.

Manuseript received 1998-09-15, accepted 1999-01-07.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

Ef X . 2uSEFEEDY — 721 —

This paper proposes such a new exutencled transaction model—the flexible cooperative transaction model
{denoted by FUTMY. FOTM con vot only relax transaction ACTD properties but also apply different extended
transaction processing mechanisms by customizing states and state dependencies of cooperative transactions to
improve performance and guarantee consistency.

The rest of this paper is organized as follows. In Secrion 1. cooperative transaction concept is defined and
conperative transaction states are specified, In Sections 2, we introduce transaction srate dependencies, the key
concept of our model. Serializability correctness criterion for our model js described in Section 3. Related work

and the advantages of cur mode} are discussed in Section 4,

1 Flexible Cooperative Transaction Concepi

To describe complex transaction properties in CSCW applications , we wil! give the formal description of co-
operative transactions and define the states of cooperative transactions,
1.1 Cooperative transaction concept

Definition 1. {(Cooperative Transaction) A cooperative transaction is a {our-tuple O7'= [7,0,8,D} . where
T=A{T1T%....T,} is a set of sub-transactions or traditional transactions, 7 is the set of objects €T actesses,
5 18 a set of the states, D is a set of the state dependencies of &7

There are a lot of long period coaperative transactions in CSCW spplications, There exist many complex re~
lations between cooperative frapsactions, such as multilevel, nested, split, join, erc. Thus, a cooperative
transaction can be divided into some sub-transactions and a sub-transaction can hsve its own constituent sub-
transactionss forming a tree structure. The leaves of 3 cooperstive transaction tree are traditional database
transactions with ACHD properties of local databases. A traditional trangaction consists of a serial of read and
write operations on the data object set O. Dividing a long peried cooperative transaction into a set of sub-trans-
actions and executing sub-transactions concurrently will improve the performance of cooperative transaction pro-
cessing.

An exampie that is used throughout this paper is the well-known example from transaction literature; plan-
ning a business trip, We consider “planning 2 business trip from Beijing to New York” as 2 cooperative transac-
tion: CF', which can be & set of such sub-transactions : 7'; reserves a business trip to an agency. T reserves a ve-
hicle from Beijing to New York, 7% reserves a hotel in New York, Cbvicusly, T end Ty can be executed concur-
rently to improve performance. o CSCW field, an application is often composed of many tasks, and & task can
be finished with different methods. For example, a task such as traveling from Beijing to New York can be fin-
sshed with two methods, traveling by a train or by a plane. An efficient cooperative transaction madel must al-
low users to specify the alterpative tasks for the same target. For example, T, can be divided into rwo sub-
transactions: T, reserves a flight from Beijing to New York, T’ reserves a train from Beijing to New York. T
and T'; arc equal at functionality level. The sub-transactions that can finish the same task are called contingency
sub-transections. They form a contingency set of a cooperative transaction.

1.2 Cooperative transaction state

A stave set S of 2 cooperative trarssction reflects the cooperative transaction’s properties. The definition of
cooperative transaction states is as below,

Definition 2. (Cooperative Transaction State) A state set 5 of a cooperative transaction 7" at time ¢ ean

have such valucs:

© HIERRESSAHIIFTR http:/ www. jos. org. cn

— Y22 — Journal of Software HAAEZER 2000,11(6)

(I At time #,7T is in Initial State]
E At time £,7" is in Executing State
R At time £,7 is in Preparing Committing Srate
C At time £,7T is in Committed State

S= |PI At tme £,T is in Compensating State
P At time £,T is in Compensated State
Al At time ¢,T is in Aborting Siate
A At time ¢,T 1s in Aborted State

F At time ¢, is in Failure State |
I is the initial state of a cooperative transaction, E.R,PI, Al are the intermediate states, and C,F,F,A are

the final states (See Fig. 1),

@ Inidal state r In FCTM, the state set S of a cooperative transaction
@ Final state T 0] ' d)
& Intermediate stz o Succesd 4 will be a pre-delined subset of above nine states. Users
C/ i can customize S according to different requirements of
0] pensALe’, L . . i
R CSCW applications , which is the important flexibility of cur
(1 " Cormnprat
I E TR AT model.
7 Suceeed s . .
San al Fal ____ For example, traditional two-phase commitment trans-
R~ :‘l_ actions, such as transactions in bank dazabase, can only
Suceeed a3, have these states: {7, E,R,C,Al,A,F}, but must not have
Fig. 1 Cooperative transaction states state T or P.

The atomicity and isolation of tradirional transaction model is saitable for short period transactions, which
produce a serial of problems that long time resource locking will reduce the concurrent granularity of system and
roll-back operation will cause large sacrifice, We introduce compensation transaction concept in FCTM. A coop-
erative transaction can be compensated, if there exists a sub-transaction which can wipe off :he effects of the
committed cooperative transaction on a database semantically. If there exisls no such sub-transaction, the coop-
erative transaction is un-compensated, For exauple, T, may have such a compensation transaction: T’ canccls

:he (light [rom Beijing to New York.

2 Flexible Cooperative Transaction State Dependencies

The largest difference between a cooperative transaction and a traditional transaction is that there exist all
xinds of relations znd interactions among cooperaiive transactions, between vooperative transactions and outside
environment. In this paper we call it dependencizs. Thae cooperation of cooperative iransactions is imposed by
dependencies. For example, the execution of T’ is dependent on the commitment of T'1y and the commitment of
T3 is dependent on the commitment of 7", It 1s just the diffcrent dependencies of all kinds of complex transas-
tions that load to a varicty of ETMs.

The descriptions of previous ETMs for transaction dependencies are all very simple or pre-defined and do
rot have the capability 10 extend to define transaction dependencies.

The FCTM model will specify transaction dependencies in terms of transaction states. Firstly, we give the
definition of transaction state dependencies.

Definition 3. (Cooperative Transaction State Dependencies)

The state dependency set D of a cooperative transaction T is definec as a set of 4-element tuple of the form;
{8§.:T: P.,P,>. S.is a state in the state set S of -he cooperazive transaction I",T is the cooperative transactions

set which S is dependent on, P, is the previous enable predicate that enforces the cooperative transaction T to be

© PEFEESSRAFITUR bt/ www, jos. org. en

P F . EHBRESMNY — 723 —

in state S, P, is the post constraint predicate that the cooperative transaction T must satisfy after it reaches the
state S,

Previous enable predicate P, is all the enable conditions that enforce the cooperative transaction T transit
from other state to state S including all kinds of outside and inside events. Post-constraint predicate P, is used to
judge whether the conflict will be caused afrer the cooperative transaction T reaches state S, whether the consis-
tency of database will be guaranteed.

We will use cooperative transaction state S., previous enable predicate P,, and post constrzint predicate P,
to defline three simple state dependencies types.

Definition 4. (Backward State Dependencies)

Backward state dependencies between a pair of transactions 7' and 7'; impose conditions of the following
type: T, cannot enter state X before T, has entered state Y, Such dependencies are defined by

(X AT} Tistate=X Y (T H)<<X(T)).

T.. state=X presents the enable condition that enforces T to enter state X. X (17,) denotes the operation
that changes the state of T"tc X. We use <C to specify the order of operations in execution schedule.

Definition 5. (Forward State Dependencies)

Forward state dependencies express conditions of the following type: T cannot enter state X after T, has

entered state Y. They are specified by the following:

(X AT, T state=X , 2 Y (T3 X(TD).

Definition 6. (Strong State Dependencies)

Strong state dependencies express conditions of the following type: T, must enter state X if T; has entered
state ¥. They are defined by the following .

(X AT Tjostate =Y , X (T).

Combining the three types of cooperative transaction state depencdencies with all kinds of states of a cooper-
ative transaction T, we can specify almost all the dependencies defined by recent ETMs. Some common transac-
tion dependencies are specified as follows.

Table 1 FExamples of cooperative transaction dependencies

Dependencies Description Meaning

Abort (AT Thostate= A, AT If 7", aborts then T aborts
Execution-on-commit (E AT, T state= k. CCL)< RCED) 1T cannot begin execution before 7' commits
Commit-on-termination (Cy:T;) Ty state=CV A, CCT) If T;terminates then T commits
Serial (E, T}, T, state=CV A, T cannot begin execution until

(C(T Y A=< ECT) T ; either commits or aborts
Begin (E T30 T state=E EXTO<E(T;)) T, cannot begin execution until T; has begun
Force-commit-on-abort (AT Ty state= A, C(T) If T;aborts then T commits
Furward execution-on- (B, TV T state=F, T'; cannot begin execuricn after T"; commirs
commit — (AT BTN

Abave are zll simple state dependencies. We can specify all kinds of complex state dependencies by simple
state dependencies. Complex state dependencies consist of simple and possibly other complex state dependen-
cies. For example, a complex dependency “T’; cannot begin before T, commits™ and in addition “T", cannot begin
after T's has committed” is specified as follows:

{E AT T Thstate=E [CITO<ETOIALC(TH<ET,)]},

There exist dependencies between cooperative transactions and, additicnally, there are dependencies be-

tween cooperative transactions znd complex outside environments, called outside dependencies. For example,

we use time limit ¢ to denote the time deadline for a cooperative transaction 7.

© HEERERKLEIF hps/ www. jos. org. cn

- 724 — Jowrnal of Software HAAEFHR 2000,17(6)

Definition 7. (Deadline Dependencies)
Deadline dependencies denote Lhat a cooperative transaction T must reach state X hefore rhe deadline time
t;» and we specify it by the following.
(Xop T ostate=X , X (T)<,
Users can use cooperative transaction siate 5, previous ensble predicate P. and post constraint predicate P,

to define varicus kinds of outside dependencies.

3 Serializability Correctness Criterion

A transaction correctness criterion determines the execution schedules that produce correct results and do
not violate database consistency. Different ETMs have different correctness criteria, FCTM can specify various
correctness criteria by various dependencies o reflect the requirements of real applications. Limitad by the spa-
ce, this paper only specifies the serializability correctness criterion.

3.1 Serializability correctness criterion

Serializability correctness criterion is a conflict~based correctness critericn. Conflier-based correctness crite-
rion considers that operations p, and g, performed by two different transactions T, and 7", conflict if their execu-
tion order is “important” for determining whether a transaction schedule H is equivalent to a schedule known 1o
be correct. Traditicnal serializebility correctness criterion considers the two operations pv and g; conflict if they
are performed on the same object and at least one of them is @ write operation. That is, serializability takes into
account only syntactic information in determining conflicts (i. s. » whether cperations are reads or writes}. To
capture this, in the following we assume the stete of-the-object operations heve an object-provided property that
reveals if the operation changes the state of the abject on which it is perfcrmed. In particular, we consider that
the type of p.(s.) is write (p;(,). op_type=1w) if the execution of an operation p, of transaction T, changes the
state of gbiect o, without reading it. The type of pis re_;ad if p only reads the state of 5,. We also assume that
conflicts are defined by a conflict rable which is a relation that contairs an entry (p.g) for each pair of conflict-
ing operations p and z. Each object o must be associated with a conflict table we refer to s 0,. conflict - table. To
define that aperations p and ¢ supported by o, conflict, an entry (#,¢) should be inserted in o,. conflice_table. If
(#sg) is in the conflict table of 0;s 2 2nd ¢ conflict. The conilict constraint for the serializability correctness cri-
terion is ’

T - — l
(p:(0,),g,80,))E 0, conflict_table= [TRUE pi(o)-op type=ww Vg (o). op type=re] :’
FALSE others

The specification of serializability correctness criterion for transaction dependencies is based on the follow-
ing observations,

= conflict defines precedence relations between transactions, and

+ serializabilicy is violated i a comnitted transaciion indirectly conflicts with itself, i.e., its precedence
relation contains itself.

Let I be a schedule over a set of transactions. X defines an order < on the operation performed by the
transactions in r. Conflicting operations in Ff define a precedence relation between transactions ia 7.

Definition 8. (Direct Serislizatinon Precedance)

A transaction T precedes T’y in A with regard to direct serialization dependencies (denoted by .58 .0y 7}
iff T issues un operation p,{e.) that conflicts with an operation ¢,(0.) of T in H. p:(s.) precedes ¢;(v.) in H,

and T and T7; are non-aborred transactions

© HEFRES AT http:/ www. jos. org. cn

P . FHAEAFLHHES 725

TTRUE 3 p o) ET, g6 ET, T, T, €1, i7j, 6.€0|[p.(0,)<g,(0.)]
TSR, o, T;= . A [A]@Srlj A I:AI&STJ.] AL{p.(0.) .q,(0.)) Eo.. conflict _table’]
._FALSE athers
Definition 9. (Indircet Serialization Precedence)
Indirect Serialization Precedence is defined by the following .
TRUE T,SRi4,T,V A T, €| TSR AT, AT:SRT5,T,]
TSRiol,=]
FALSE others
Definition 1. (Serialization Precedence Transitive Closure)
Serialization Precedence Transitive Closure is defined by the following:
T.SR6 T3 n€EN|TWSR T,
Theorem Serializability Correctness Criterion for FCTM. Let r, be the set of all committed transactions in
H. r.={T"C(THEH}. H is serializable ifweach transaction T, in 7. does not SR precede itself, . e. , the transi-

tive closure of the T, with itself daes not hold.
¥ 1€n| 1 [TSREon T,

¥ T.€o|{C,n— T T state=C, 11 [TiSRiw.nT 1 € Dy

4 Related Work and Conclusion

An automata-based specification of state dependencies is discussed in Ref. [5]. This approach cannot be
used to specify correctness criteria. ACTA supports ETM specification and implementation-independent rea-
soning about transaction-execution correctness and structure. The research of Ref. [7] proposes a framework
supporting implementation-independent specification of ETMs described in terms of dependencies between trans-
actions, which our model is extendsd from. The main difference between dependency specifications and ACTA
is that dependency specifications provide reliable true and false evaluation results. The main difference between
FCTM and Ref.[7] is that the state set of a cooperative transaction can be customized and extended in FCTM.

FCTM is very flexible in a distributed environment cohsisting of autonomous and heterogeneous systems.
The main advantages of our FCTM medel are as follows.

¢+ The state set and state dependencies of a cooperative transaction can be tailored and customized to reflect

application requirements, and evolve as application requirements evolve,

+ Users can develop new ETMs from existing ones by composing their dependencies.

We have defined a flexible cooperative transaction language based on FCTM and now we are implementing
a prototype system of a web-hased datzabase cooperative middle-ware to support CSCW database applications on
web. This prototype will be used to demonstrate the power and flexibility of our model. The mechanisms of
many advanced transaction models, such as the Sagas Model, the CoAct Model etc. . can all be applied in it.
The details about the prototype and its results will be given in another paper after we finish the prototype

system.
References

1 Gustave Alonsc, Divyakant Agrawal, Amr-El Abbadi et al. Advanced transaction models in workflow contexts. In: Pro-
ceedings of the 12th IEEE International Conference on Data Engineering. New Orleans, 1986, 574~581

2 Dayal U, Hsu M, Ladin R. A transactional model for long running activities. In; Proceedings of the 17th International
Conference on Very Large Databases, Barcelona, 1991. 113~122

3 Gareia-Molina H, Salem K. Sagas. In: Proceedings of ACM SIGMOD Conference on Management of Data. 1987. 249~

© hIEREY

SCBAFIEICE httped/ www. jos. org. cn

— 726 — Journal of Software #HAEEH 2000,11(6)

259

4 Rusinkiewicz M, Klas W, Tesh T ef al. Towards a cooperative transactior: model ; the cooperative activity model. In: Pro-
ceedings of the 21st International Conference on Very Large Databases, 1995, 154~205

5 Attie P, Singh M, Sheth A et i, Specifying and enforcing intertask dependencies. In; Proceedings of the 19th International
Conference on Very Large Databases. Dublin, 1943, 131~145

6 Chrysanthis P, Ramamritham K. ACTA; a {ramework for specifying and reasoning about transaction structure and behay-
ior. In: Proceedings of the ACM S1GMOD Conference on Management of Thata. 1990, 211~243

7 Georgakopoulos I, Hornick F. A framework for enforceable specification of extended transaction models. lulernational

Journal of Intelligent and Cooperative Information Systcms, 1904,3(3):285~253

FHeHEESFRE
g 274 BAR R4

(EBR2HEARARATEER K 410073)

HE R#BHT-ACSCWHAHTHHAFFALITRA—FEWFA FHiE FCTM (flexible cooperative trans-
action model). ¥ AL E THRFEME L, AHETHEFFURA RENBFEFHFORSF AN I A F
2 E B FEEESF AR A IS RAAR EER DA FSFORSEMBE T T 4740 EAEEDN
FCTM #i4L 5 E-F R P B ARE R A ¢) CSCW B A MR T L, R Eh T LA FH ek SRR SH0.
KA CSCW, ¥H 4B RMAA, FHLERE LN,

mEESES TP

PEUFFTE hitpi/ www. jos. org. cn

