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Error Analysis in Nonlinear System Identification
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Abstract In this paper, the numerical zpproximarnion characteristics of fuzzy system are discussed, and the
influence of approximation error and initial state error on fuzzy system are analyzed, Finally, an important
conclusion is obtained that under some conditions ., fuzay system output differs little from that of the actual
system.
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The fuzzy sets theory was introduced by Zadeh in 1965. Since then, {uzzy sets theory has been widely used
in meny fields. Nonlinear system identification”~* using fuzzy system is one of the most important application
branches. Many researchers have studied this topic, but fewer have studied error analysis in nonlinesr system
identification™"*2*"% using fuzzy system. This paper will discuss this question.

Generallys a fuzzy system consists of a set of fuzzy rules. In this paper, we consider an MISO (multi input
single outpur} fuzzy system as the following .

Rule i, IF )18 A} AND a;is AL AND ... x,is Al, THEN yjs ' ELSE

Rule 2. IF z;is A} AND xpis AS AND ... r,is AZ, THEN y is B* ELSE

Rule N. IF x,is A7 AND x5 A AND ... 2, 1s 4, THEN yis BY ELSE

Fact: z is A', AND z,1s A’; AND ..., is 4',

Conclusion: yis B’
Accerding to Dr. L. X. Wang, using max produce inference and centroid defuzzification method, the final

numerical output can be described zs follows ;
\ _[Fﬁ' ) ydy

¥ » (lj
e
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where e 3=V [I H_ s (x| V]( H,u,‘;(.r,-)] . ,uﬂj-(y)J :l
ERE IS X 0 i= iy
In practice, especially in control applications, we consider that the output fuzzy sets B are singletons &,

te.,
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1, ify=§
'l,tb-j(y)z , » j=172h.. ;Na (2
0, otherwise

then we have

[, if v=3
i (y) = 11 “ L G=1.2v . W Nsi=1.2,. . e €

G, oterwise

Thus the final output can be rewritten as follows,
» n
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y=

HF‘A (z)

S

k=1 =1

Let @;(z)= , j=1,2,... N, where = {(xys22s- .. s2,)7. Thus Eq. {£) can be rewrit-

ten as
N
= F @)= 20 p, (). (5
1=1
Dr. L. X. Wanyg has proved Eq. (5) is a universal approximator.

w(t) Wi+l ) Ir real applications, we can use a fuzsy system to identify

_System - . . R ) )
- the real system (see Fig. 1. «(¢) is the activation funetion, TDL
™I

- and @ arc the time delay logic and the parameter of fuzzy sys

7P ¥
¥e+1) . .
TS( & e & — tem, respectively). When the fuzzy system approximates the
E

real system well enough, it can be applied independently. This

Fig.1 Structure of nonlinear system ) }
identification using fuzzy system (FS) method has been widely used, but there still are several ques-

tions to be studied, for example, {a) the numerical approxima-

tion characteristics of fuzzy system; (b} the influence of approximation error and initial state error on fuzzy
systen.

The rest of this paper is organized as follows. Section 1 studies the numerical approximation characteristics

of fuzzy system. Section 2 studies the influence of approximation error and initial state error on fuzzy system.

Section 3 deals with simulation analysis., Section 4 concludes this paper.
1 Numerical Approximation Characteristics of Fuzzy System

As we all know, in the application when we use samples to train a fuzzy system, it is a procedure of ascer-
taining the parameters of the fuzzy system, and it is also a procedure of interpolation. During the application,
first of all, one should ascertain the number of rules. Is there a theorem to direct the selection of the number of
rules? Theorem 1 answers this question.

Theorem 1. Give N samples {7y}, ZERS WER, i=1,2,... .N. %7, when i#j, then there must
exist a fuzzy system (as described by Eq. (5)) which contains N rules satisfying

Fi=FE=as (6

where #, is the actual output of the fuzzy system, ¢ is the desired output.

2#;«1{(&)

: “
Proof. We have defined &;(3)=F"—F———j=1,2,... N, 3= ZB"P,(}). We use Guassian
=1

)

20 ([T o)

h=1 =

© HIERRESSAHIIFTR  http:/ www. jos. org. cn



EEF FoESR AR RBAWRELE SN — 44§ —-

membership function, i.e. ,
oy ey LEmaD]
st (i) =exp 70’ }
We can easily see that the following two assertions hold ;

Assertion 1. {$;(3)} (;=1,2,... N} is a partition of unity and linearly independent,
il - -
Assertion 2. Let Sy(F )= & {F), @ (F),... ,Du{Z) s =1,2,..., N, then i1 is linea-ly independent
too.
Given N samples {7 .31 =1,2.... N, we can use the following matrix equation 1n uniformily represent

tke relationship between the inputs and the outpuats in the fuzzy sysrem.

a DT FE) ... DD A o
G . Bl_|9G@E) &G .. @@ LR | ' o
2 Py ®EN) L EED Fd ¥

where £ indicates the number of rules. According tc assertions 1 and 2. when £—~N, Gy is full rank, i.e. (',
#sa. o837 10 Eq. (7} must have unique solution, and this uniyue solution is a function with (; as its parame-
ters, As ai 6{, which make G be fuil rank, are not unique, se the solution (3%, 8%....,#) in Eq. {7} is not
unique.

From above we can draw the following conclusion. When the number of rules equals is that uf samples, we
will be able to realize accurate interpolation. So the number of rules should aot exceed that of samples, other-
wise it may cause too much training, even oscillation, thus reducing the generalization ability of fuzzy system.

This theorem provides the criterion for the selection of rules.
2 Influence of Approximation Error and Initial State Error on Fuzzy System

2.1 VYuzzy identification of deterministic nonlinear system
A deterministic SISO (single input single outpur) discrete 1ime systern can be formalized as.

Y+ =70y avli—n, 4D ult), suls -a,)), (8
where » (i) & U R, () are the input and cutput of the sysiem respectively. n, 1. #, are their maximum
delay time, respectively. Initial state value of the system at time 0 is

Yo=[y (0 sy mn,+ 10 (0D oL szeC—nud 07 (9)
when (=00, y(r)=y_ € YVCR", f{ + }is continucus funciion. The siructure of fuzzy identification of a nonlin-
ear system can be described as Fig. 1.

Suppose we have got the fuzzy system of the actual system:

FUF D =y @ e aylt—n D lde. . ula—r) @), o

where & is the parameter of the [uzzy system.

Dr. 1. X. Wang has proved a fuz;:y system cau approxifate any continuous function defined on compact set
10 any prescribed accuracy. That is to say, given ¥ £,2>0. w{ » YET7, v, €Y. wc can find €, which satisfies
the following irequality;

Flyle) oo yCmn 1) ,ule),, . alt—n))

— Py D) a—n) 07

Genetally, after 8" is found, the fuzzy system czn be independently applicd instead of the actual system,

max

“ <e,. a1

that is,
et 1= F0 e oFle—ny 1) ult) e e (t—n) . 87) (12)
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and the initizl state value of fuzzy system Yo=[3(0),... ,5{—n,+122ul0) s .. su({—n) .

Now, there are two questions to be considered. (1) Qbviously, there exists approximation error between
FCo ) and £+ ). (2) The initial state values of 7 (+ ) and F( + } in actual applications can not be strictly
equal, which may affect the value of %(z) at time £. As both (1) and (2) exist, then is the fuzzy system still
effective?If so, what are conditions? We will discuss these questions in the following section.

2.2 The influence of approximation error and initial state error on fuzzy system

Let state variables (¢ =y —n,+:), o py=ult—m+j—12, G=1,%.... o3 j—1.2,... ), respec-

tively. Then the actual system (8) can be rewritten ae the following state equation and cutput equation ;

(4 1)=F(x(@),ult))
s 13

y()=xz, &
where F{z() ,ut))=[x,U) ... »rny(t) ,f(x(t),u(t)),x,.yﬂ(t),. cou(ed ], 20 =Y, Let &i(1)=3{t—n,+
i), i,.yﬂ(t):u(t—nu-{-j—]), (4=1+2s...sny; 7=1+24...sn,), then we can ger state equation and output
equation of (12} as follows:
F@EH1I=F{EE) u(),8")
{5(t)=iny(t) ' e

where F(2() ,ule))=[#,01),... RO ICIONIOI O FSNTONREIOED 7}

Suppose that the actual system satisfies the condition described below ;

Condition :

The partial derivative of any variable of the continuous function

FpW o ay@—n,+1)ul),. .. sult—n)) (R wH—R

in defined space satisfies

_ af of N
L_maXHBy(t—nﬂri) Pau(e—m, i1 ‘ ]<°°’ (15}

where i=1,... ;5 j=1.2,... 0.+ 1; t€ [0, M);u(t)EU, y_ €Y. M is a finite positive integer. Then the
influence of approximation error and initial state error on fuzzy system can be described using the following
theorem.

Theorem 2. Given ¥ €2>0, if for the actual system (§) and fuzzy system (12),

(1) the actual system satisfies the above condition;

(2) the initial state error berween the actual system (8) and the fuzzy system (12) satisfies max [| Yo— 7% ||
<r (r is defined in Eq. (18)), then there must exist & (parameter of fuzzy system) which satizfies

max || () — () | <e,

where : < [0,M].

Proof. From Eqs. (13) and (14), we can get that to any given ¢€ [0,M], the following inequality hclds:

lz(ey =2 | = | Flatt— 10ult — 1Y — F@G— Daule — 13,8 |
L Fat— Dt — D) — FlaG — Dt -1 | (16)
+ I Fate— Dautt — 1) — FGG— Daalt — 1,0 |
According to the mean value theorem, there exists
=D =d» 26—+ (11— » 2(¢—1), (0<CA<I1),

which makes the right-hand side of the inequality above satisfy the following equality;

the right-hand side H Z s ale=D =i —1)) “ I FG—D an
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fo 1 0 0 W
0 0 1 0
b aF _af o af &
where ax |8 Ay 7T 7T r'ir,‘yH axw)in“ ’
Q g 1
Lo 0 o] 0 i} [} ]

FO—1=[0,...,0, fGG¢—Dwlt I1D—FG 10,uG 1),07),0,....,0070
Singe f¢ = ) satisfies the condition, so % |ee 1y is finite. We take matrix narmas | * || »,» vector norm as

I + |l ; {these two norms are compatible), thus we heve

a E
= e =2t G Fr0 L = Lo

Ta | Fit+—13] , given ¥ &,>0, there must exist & that satisfies the {ollowing incquality;
[ Flale—10m(z—1)— FEG— D .u(z—1),8") || e,
So, || Fte—1) | ;<¢ holds. As | + || is compatible with || + | ;. combined with Eq. (177, we¢ have

Hzw— 20 | < “ Zz
ol

-1 * ” x—1D—xG—1> H +

FFG—1D

<Ll » N xCe=1d—2G=12 1 +ep.
The following inequality can be deduced by analogy:

=1
2y m i) | < Do Li - et Lty | 2€0) (0D | -
n=10

Given ¥ €2>0, when we select the parameters of fuzzy system such that the following inequality holds
=1
e >_:L.“,.] e,
n—

then the initial state error satisfies
=1
r= =0 £(0)] <E]ﬁ( e— EL;,e,) . (18)
m am=0

We must have || 7 (2)—#¢) | <Ce, i.e. max {| vy — 3Gl — |f ;r,.yi:)—i-,x(z) || <e. This ineguality
along with the fact that ¢ is an arbirrary value in [0,3f] proves theorzm 2.

Theorem 2 indicates thar if the fuzzy system approximates the actuzl system well envugh, even though
there exists initial state error between the {uzzy system and the actual system, this fuzzy system can also wark

well,

3 Simulation and Analysis

Example 1.  We use fuzzy system to identify the following nonlinear system;

):y(t)y(.t—l)fy(r)+2. 5
1+y* ) +y —1)

yl+1 +ls).

L . . . Mm
Activation function u(#)=sin -=.

25
Here, we use TSK (Takagi-Sugeno) fuzzy system to identify the nonlinear system. TSK fuzzy system also

consists of three parts, fuzzification, fuzzy inference, defuzzification. The obvious feature of this system is the
fact that the output variable in the conclusion part of each fuzay rule is the linear combination of input variables
in the condition part of each rule. The rule in TSK fuzzy systzm can be expressed as.

RIF 7, 1S AL AND 7, IS A, AND... AND o, 1S 4}, THEN y =ph+pla;+... +pir.
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Fig. 2 The hollow dots-

&0 B0

-—the actuel systern,

100

1/steps

Initial state values are w(—1)=1.5, y(0)==0. &
The solid dots—-- the fuzzy system
Initizl state values are J(—13=1.5, y(0)=0.0

We divide the fuzzy subsets of () ,v(2).y
(t—1) into {N8,Z0,PB}. NS,ZO.PB repre-
sent Negative small, Zero, Positive big, respec-

tively. Gaussian membership function is used,

(x;—a})?
[XUSE

algorithm is based on BP. After 200 iterarions,

L. e.

pai (z,) = exp [Learning
the mean variance of all samples 1= 0. DO0320,

After the TSK fuzzy system ig built. it can
be independently applied. Figure 2 shows the
rurves of the aczual system and the fuzzy system
at differcnt initial states. respectively.

From Fig. 2, we can draw the following
conclusion. Though there exists approximation

error between the fuzzy system and the actual

system, so long as the approximation error is small enough, even if the initial state values of the actual system

and the fuzzy system are different (satisfving (2) in theorem 20, the fuzzy system can still approximate the

actual system very well, This proves thecrem 2 in practice.

4 Conclusion

In this paper, we have discussed the numerical approximatior characteristics of fuzzy systems and pointed

cut that the number of rules of a fuzzy system should not exceed that of samples we can get, We have also

investigated the influence of approximation ertor and initial szate error on fuzzy system and get a conclusion that

under some conditions. fuzzy system output differs little from the output of the actual system. In the end,

through simulation, we prove the correctness of the thearems described in this paper.
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