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Abstract It is proved thar every element [¢]€ Ruu /M. except the greatest and least elements is branching
m Ry /My i- €, the greatest lower bound of some two elemen:s greater than [c], where Ro./M,., is the
quotient of the r.e. wtt-degrees Run modulo the cappable 1. e. wit-degrees M,,,.
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1 Introduction

let R be the upper semilattice of the r.e. degrees, M the set of all the cappable r.e. degrees, and NC the
set af all the noncappable r. e. degrees. Ambos-Spies, Jockusch, Shore and Soarel’! proved that M is an ideal in
R. Hence, we have a new structure R/M, the guotient of the r.e. degrees R modulo the cappable r.e. degrees
M (we shall use [a].[h].... todenote the elements of R/M}. Schwarz™ proved that R/M is downward dense,
Ambos-Spies {quoted in Rel. [37]) commented that the downward density theorem in R/M follows from the
Robinson’s splitting theorem and the fact that NC=LCu, the set of all the r. 2. degrees which cup to 0" by low
r.e. degrees. Sui and Zhang'" proved thet the Shoenfield cupping conjecture holds in R/M, i. e., given any
(al: b]€ R/M such that [0]<[a]<[b] there exists an 1. 2. degree ¢ such that [¢]<[b] and [b]=[a]V [e].
Suil and Yit*, independently, proved that the Shoenfield conjecture does not hold in R/M. But we do not
know whether there is 2 branching element in R/M.

In this pzper we shall consider the quotient Rue/M.,y. In the following sections, we assume that every de-
gree mentioned is an r.e, wtt-degree. We shall prove that for every [eJ€ Ry /My such that [9]<[e]<[0')
there are [a] and [b]& Ryi./Mu. such that [eJ<[a],[b] and [¢J=[a]A[b].

Our potation ie stendard, as described by Soure!” with a minor change. A number & is unused at stage s+
1if 2225 is greater than any number used so far in the construction. We use @, ¥.0.... to denote weak truth
table functionals, as usual., which have recursive use functions g, ¢, f,. .., respectively, increasing in argu-
ment. Before ending this scction, we list some hasic definitions and theorems that are used ia the following
sections,

Defigition 1. 1. (i) Anr.e. degree ais cappalie if there exists an r.e. degree b>>0-such that a{1bh=0; and
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a is noncappable, otherwise.

(ii) Ler M., denote the ser of all the cappable degrees.

(iii) Let NC... (=R...,—M...} denote the set of all the noncappable 1. e. degrees.

Theorem 1.2. 10 M is an ideal in R. Maoreover, {A€ & .degr{AVEM = {AE & :degun (AYEM...}, where
& is the lattice of all the recursively enumerable sets. Therefore, M., is an ideal in Ran.

Definition 1. 3. (i) A coinfinite r.e. set A is promptly simple if there are a recursive function ¢ and a recur-
sive enumeration {A.},c. of A4 such that for every e,

{W, |=co—+3 23 s(zEW, .0 br € Ay ).
An r.e. degree a is promptly simpie if there is a promptly simple r.e. set ACa,

(ii} Let PS... denote the set of all the promptly simple degrees.

Theorem 1.4. (Promptly Sitple Degree Theorem[!'?) Let A be an r.e. set. Then A has promptly simple
degree iff there are a recursive funetion g and an enumeration {A.}.c. of A such that for all 5,¢(s) 225 and for all
eCa,

W, | =co—=3 23 s(xEW. ...t Al xEAunl2), (1. 1)
namely, A promptly permits some element € W,.

Theorem 1. 5. ' NC=PS.

Lemma 1. 6. (Slowdown Lemma) Let {G...} be a strong array of finite sets such that G, , &G, 4, and G.==
lJ.G.... Then there is a recursive function 4 such that for all e and s, Wiy =G, and Wiws,. NGewe s =&

2 Main Theorem and Its Requirements

Theorem 2. 1. Given any noncappable r. e. degree e<(0', there are r. e. degrees a, b such that e<a.b; [c]
<[al.[b], and a{1b=c.
Ry the distribucivity of R... we have the follawing.
Carollary 2. 2. [¢] is branching in R /M., for any _e] such that [0]=<[e]<[0"].
Proof. Givenany [0]=<[c]<[0'_, let ¢€ [c] he an r.e. degree. Then ¢ is incomplete and noncappable.
By Theorem 2.1, there are r.e, degrees a and b such that e<Za,bh; [e]<[a],[b] and a(Nb=c. We now show
that [e]=[aJA[bh]. T.erd he an r.e. degree such that [d]<[al.[b]. We prave that [d]<[c]. Since [d]=<
[al.[b], by the definition of relation <, there exist r.e. degrees ag.b: € Mu. such that d<CalJas, bBUb,. By
the distributivity of R, there exist r.e. degrees a®<a, al<la,, b"<b and bi<Cb, such that d=a"Ual=h, Jbi.
Then a,bj& M, and a’,b°=Ia,b, so allJblEM.. and a®Ub*<le. Hence, d<iclJallUbi, i.e. . [d_<[c].
Corollary 2. 3. R.../M.. is upper-ward dense.
To prove Theorem 2.1, we fix an r.e. set (7 such that [0]<_deg...(C)]=<<[0']. By Theorems 1.4 and
1. 5, assume that  is promptly simple via a recursive function p and fix an enumeration {C.} of C such that for
every e,
W, |=w—=3 27 s{xEW, .. & O 2#Crenl2).
We shall recursively construct sets A.B such that AL . CEBW, for any cappable r.e. set W.; B CPV, for
any eappahle r.e. set V.. and  is the infimum of APDC and BBC. Namely the construction will satis‘;fy for
every e the following requirements:
e A= (CPRU ) —=dega. L) ENCus
Z, B=W.CHV) rdegu(V.) ENCus
A BLADCY=0.({BOC) = £, total >~ £. .. C.

By Theorems 1. 4 and 1. 5, we decompose 2%, into the following infinitely many subrequirements: for every
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{Ew,

Rt A =0,(CAUD &AW, | =003 23 (@€ Wi U [x#. , o [2)

where p, is a recursive function defined in the construction such that if A =@, (CEPL,), then p. is total and

shows the prompt simplicity of {7,
Similarly we decompose 22, into the following infinitely many subrequirements; for every i e,
2, B=W.(CPVI R W, =0T 7T s(xEW. &V, .[x #V,,ve(,,rx),
where g. is a recursive function defined in the construction such that if B=%,(CPV,), then ¢, is total and shows
the prompr simplicity of V.
At any stage s+ 1, we define the length of agreement,
1Z(¢,s)=max{z.V y el () =&, (C.SU. 5300},
2 leasr=max{z: ¥ y<a(8,(y) =¥, (CEOV. iy}
A stage s+ 1 is eF-cxpansionary if ¥ (e,5)>1% (e ,¢) for every 1<Cs.

To satisly ..., at any stage s-+ 1. if there cxist = and y such that yE K., IFle,s) > e, oyt n €W, —
Wi, and 2@ (le,i,5)), then enumerate {esiry) s in A, and wail fur the next e -expansionary stage ¢+ 12>
s+1. At 41, define p(s) =2 I Cla(esisy?) =Cl@allesind), then U, [ e,y AU [@alled ),
and %, is satisfied.

To satisfy .42, at any stage s+1, we define the length of agreement ;

Hes)=max{z¥ y<<a(@, (ADCiy) =06, ,(BHCsy> L5
s+1is e-expansionary if [{e,s)7>/(e.1) for every t<s. At any e-expansionary stage ¢t —1, let s-+1<¢ be the Jast

g-expansionary stage. Fcr any x<({{z.s), if A[A.(x)Z A 6.(x) and B,[6.(x¥#B,[8.(x>, then we shall ensurc
that C.[8.(xY2CT8, ().

3 The Priority Tree and the Basic Module

The priority tree T=2"". We define an order <, on T as follows; for any «, 3¢ T,
e feraC BV r e, B(r” 0Sa& o™ 1280,
We assign .10 aif [a|=3¢; Fto aif |a|=3e+1; L. to aif |e|~3e+2: FE., toaif |e|=3\i) | 13
Yoito aif |al =34e.id+2. We say thar @ is a strategy for the requirements assigned to it.
At any stage s+ 1. we shall define a sequence &, of nodes accessible at stage s 1 as follows.
Let
[ {e,s) i |a|=3e,
Ia,s)y=<1%(e,s) if |a|=3e+1,
Zie,s) if |a]=3e+2.
We assume that I{a.0Y=0 for every a€'T". For a€ T', a stage s+1 is an a-stage if =8, 0r s=0. s+1is e
expansionary if s=0 or s+1 is an a-stage and {{a,s)>>/{(a,t) for every a-stage ¢+ 1=Cs.
We define an auxiliary function z: 77 as follows.:
B a(|f|=3¢e+1) if ais a strategy for . ..
rle)= SCa(|B|=3e+2)y if ais a strategy for &, .
Now we define &, (#) by induction on n {or » < s. Suppose that a=8.[n. 8 (x)=0if s+ 1 is an o
expansionary stage, and 6, (n) =1, otherwise. The true path & is defined by
3=li£n infd..
During the construction some node «& T will be initialized at certain stage. a7 is initialized at stage s~

1 if every parameter associated with « is set to be undefined.
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l.et a be a strategy for ... We assign a number z.to be a follower of a. At any r(a)-stage s+1, if there
are an x and a vz, such that

(3.1 r€EW..,— W, ., where 5’ +1<;s is the last v(a)-stage,

(3.2) vEK .,y le i ) &AL [Tle)s5) et n), and

(3.3 @Cleyi v )<<a,
then enumerate {¢.i,y’ in A and wait for the next r(a)-expansionary stage, say #+1. At #+1, define pre, (53
=u. U, @ (lesisy?) =CJ@mllesiry)), then it must be that U, [e ({e,i 32 )52U. [ @ (le.i,y? ). Wa say that
@, ;s satisfied at (&), and « never enumerates any element in A unless if r(a) is initialized.

We use a similar basic module for 2, ;.

Let 8 be a strategy for .#7,, & be a strategy for &2, ;. Assume that 87 0Cz(a). Then some {e,i,y? is enu-
merated in /A oaly at S-expansionary stages. Hence, if f,(z) is defined at some #-expansionary stage s—+1 for
some z, then f;(z) does not change because of enumerating {e,i,y) in A.

Assume that r(a) * 0C 8" 0Za,é, Assume that at some r(a)-stage s+1, there is an element {e,isy? to be
enumerated in A. Then s+ 1 may not be a S-expansionary stage. 1f there is some element enumerated in £ after
the last B-expansionary stage, then {¢.7.y> enumerared in A may result in f;{z) changing for scme z. Precise-
ly, let sp+ <5 be the last f-expansionary stage, assume that there are {¢',/'»y'} € B,— B, and a z such that {
(Besg) >z, 0,{2) > "4y}, I there are x and v such that (3. 1)~ (3. 3} hold and 8,(z)>>{e,i,y?. then we
cannot enumerate {e,i,y} in A directly. To cope with it, at any r(e)-stage s+1, if there are x and vz, such
that (3.1)~(3. 3) hold. then define an auxiliary function .

z{a,5)=min 8,(z) 121 (B5p) Bi2) > esiyy), T W (B ()i E B,—B.,) Fa
where s34 155 is the last S8-expansionary stage. If z(e,s) does not exist, then enumerate {e,i,3> in A. Other-
wise, firstly enumerate z(a.s) in G, secondly enumerate W ., until a stage t=>s such that z{(a,s) € Wi+ and
then compute (¢}, where % is the recursive function whose existence is guaranteed by the Slowdown lemma. If
C,[z(a,s) =Cupnlz{ass), then do nothing; if C.[z(a,s)7Chn [ 2(a,s5), then we say that C promptly permits (e,
i.v), enumerate {¢.i,y) in A and wait for the next a-expansionary stage u+1>>s. At u+ 1, define pals)=u. If

Claledy))=Clailesi vy, then F,, is satisfied at (e) unless if v(a) is initialized afterwards.

Fix anv {e,i.y} such that y=zz,. If ais on the true path and |W.|=¢, then there are infinitely many a-
stages 51 such that there are x and y satisfying (3. 1)~ (3. 3) at s+ 1. Hence, if 2, is not satisfied at z{a),
then the range of z(a,5), as a function of s, is infinite. By the prompt simplicity of C, there is a stage when <e,
i,y) is promptly permitted by C and enumerated in A.

If for every y, C changes to below @{{e,i,3)" after {e,i.v) is enumerated in A, then we could show that

K <...C, a contradiction to the assumption that C is incomplete.

4 Construction

A strategy « for R, requires attention at stage s+ 1 if &2, is not satisfied at t(a), 2z, is deflined, (e}~ 0=
a, t{a) 4§, and there exist x and y==z. such that

(4.1) xEW..—W, .. where 5 + 1< is the last r(a)-stage,

(4.2) vEK.  lesdsvy<d(r(a),s), (e i, v} & A,,

(4.3) ¢ (e sty ) <<x, and

(4.4) there is an a-stage sts after the last a-stage when a received attention.

It is similar to defining a strategy o for &2, requiring attention at stage s+1,

Stage s=0; Set A,=B,— @ and initialize every a&T.
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Stage s+1: The construction will proceed by performing the following steps.

Step 1. For every strategy o with «~ 0 8., if a is a strategy for %, (or Z.), then define p,(s")=s for every
s'<s with pa,(s') 4, and if there is a strategy 8 for &, (or &2, ;) such that r(#)=a and some (¢,:,y) was enu-
merated in A {or B) after the last e-expansionary stage t+1 and C.[@{{e,7,3)) =Cl @ (lesivy?) (or Cf ¢ (e,
t.y2)=Cl¢.(Le,i,3))), then &, (or £,,) is satisfied at @ unless a is initialized afterwards.

Step 2. Find the least e requiring attention at stage s+ 1.

Case 1. If e is a strategy for .., then let y be the least one satisfying (4. 13~ (4. 3). If for every .#-
strategy @ with v(a)C 3" 0&Ze, there is no element enumerated in B by any §D8 after the last f-expansionary
stage, then go to step 2. Otherwise, firstly define

ela, s)=min{fp(z) ;v (adCF" 09 a,z<L(Fysp) s lesi, v <L 0e(2),T ¥ (Bplz) =y GB;*Bsﬁ) b

where sg+ 15 is the last f-expansionary stage and &;(y) is the recursive use function of &, (AGC) if Bis a
strategy for . ;; secondly enumerate z (a,s) in G,, enumerate Wy, until a stage #225 such that z{(a,s) €
Witorar» and then compute p(2), If C,[z(a,s)7Co[z{a,s), then go to step 3, otherwise, go 1o step 4.

Case 2. If ais a strategy for .., then proceed as in case 1 replacing A by B and B by A.

Step 3. Enumerate {¢,,v) in 4 if @ is a strategy for %, .; enumerate in B if 2 is a strategy for -Z,;; and ini-
tialize every node ¥>>;a.

Step 4. For every aC4,, if z. is undefined, then assign the least unused number to be z..

Step 5. Initialize every node ¥>>.8..

This ends the description of the construction.
5 YVerification

Let 8=liminf & be the true path. We prove the following lemmas by induction on «(é.

s

Lemma 5. 1. 1f a8 is a strategy for &, ., such that t{a) " 0 (=&, then /&, is satisfied at z(a) eventually
and @ enumerates only finitely many elements in A.

Proaf. Let s, be the least o-stage such that # is not initialized after s,. Let =z, he the follower of o at the
end of stage s,. Since rlad ™ 0C &, we have A=®.(CDII).

Assume that &%, is not satisfied at z(a). then | W, | =co, There are infinitely many r(e)-stages s-+1 when
a requires attention. Given any v2e., with v&€ K., if (e.7.y7 & A, then there are infinitely many r{a)-stages s+
| when @ requires attention via v, and so the range of z(a,s), as a function of s, is infinite. By the prompt sim-
plicity of €', there exist an » and a stage s+ 1225, such that @ requires attention via x, {e,i,y’} is enumerated in
A at 5+ 1, a contradiction. Hence, {(e.i.v} is enumerated in A at some r(a}-stzge, say s+1, and C.[@ ({e.i,
yNFC @ eis ), atherwise 9, ; would be sazisfied at 7{a), where ¢+ 1225 is the next r{a)-expansionary
stage. Now we show that K<Z,,C. To decide whether y€ K for any given vz, find a stage s+ 12>s5, such that
Clellesi,y)=Cloleivyd ), then yE K iff y€ K,. This is a contradiction to the assumption that C is in-
complete. Hence, 4, . is satisfied at r(a) eventually, and & enumerates finitely many elements in A.

Similarly we can prove the following.

Lemma 5. 2. If (5 is a strategy for &, such that t{a) ~ 0C &, then 2., is satisfied at r(a) eventually and
a enumerates only finitely many elements in B.

Lemma 5. 3. 1 a4 is a strategy for ..#., then .#7, is satisfied.

Proof. Let s, be the stage as defined in Lemma 5. 1. If a” 08, then .47, is satisfied; otherwise, f. is
total. To C-recursively compute f,(y) for any given y, find an a-expansionary stage s+ 1225, such that

Cla(yy=CT8.(v),
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then f,(y)=/f..(y). We now show that at any a-expansionsry stage t+1>> s, if A{8(y)#A[8.(¥) and B.[6.
{(»)#B.[6.(y), where ¢ +1>>¢ is the next a-expansionary stage, then C,[#.(y)#Cl#.(3). By the construction,
we assume that some 2<U#,{y} is enumerated in 4 at t+1. Then by the initialization, another 2’ <#,{y) is enu-
merated in B by any Z-strategy £ at any stage u+ 1<’ , which 2z only if t(§)Ca” 0C ¢ and C promptly per-
mits £, () at u+1, i.e. ,» CJ8.(3)7=C[8.(y), a contradiction to the choice of 5. Hence, f..{(y)=f., (3.
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