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Abstract This paper presents linguistic cloud models for knowledge representation and uncertainty handling
in KDD. Multi-dimensional cloud models are introduced as the extension of one-dimensional ones. The digital
characteristics of linguistic clouds well integrate the fuzziness and randomness of linguistic terms in a unified
way. Conceptual hierarchies based on the models can bridge the gap between quantitative knowledge and qual-
itative knowledge. In order to discover strong association rules, attribute values are generalized at higher con-
cept levels, allowing overlapping between neighbor attribute values or linguistic terms. And this kind of soft
partitioning can mimic human being’s thinking, while making the discovered knowledge robust. Combining
the cloud model based generalization methed with Apriori algorithm for mining association rules from a spatial
database shows the benefits in effectiveness, efficiency and flexibility.
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KDD (knowledge discovery in databases), or data mining, is the non-trivial extraction of implicit, previ-
ously unknown, and potentially useful knowledge from large number of small, very specific instances™ ", Min-
ing association rules is an important issue in applications. A typical example of an association rule in retail indus-
try is like “90% customers who by bread and butter also buy milk”, Such rules are very useful for marketers to
develop and implement customized marketing programs and strategies.

The problem of mining association rules was first introduced in Ref. [3]. Since then, various algorithms
have been proposed and developed, such as AIS®!, SETM[!, Apriori®®, DHP™, FUPY), FUP2E, etc.
Among the algorithms reported, Aprioriis an influential one. It makes multiple passes over the transaction data

for discovering large itemsets. In the first pass, it counts the supports of individual items and determines the
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large 1-itemsets. In each subsequent pass, a number of candidate large items are generated based on the large
itemsets found in the last pass, and then the actual supports for the candidate itemsets are counted by scanning
the data. The process continues until no new large itemsets are found. Apriori outperforms AIS and SETM by
a lactor of three for small problems to more than an order of magnitude for large problems®™. DHP algorithm
uses hashing technique to further reduce the number of candidate itemsetst™,

Srikant and Agrawal introduced the problem of mining quantitative association rules in large relational ta-

e-10] - The association rules mined from transaction

bles containing both quantitative and categorical attributes
data are referred to as Doolean association rules becanse a transaction consists of binary attribuces (items).
They mapped the guantitative association rules problem into Boolean association rules by representing cach at-
tribute with as many fields as the number of attribute values in stead of just one field. If the domain of values
for a quantitative apprqach is large, onc can first partition the values into intervals and then map each {(at-
tribute, interval} pair tc a Boolean attribute. And then, any algorithm for finding Boolean association rules can
be used to {ind quantitative zssociation rules.

The prohlem of maintaining assaciation rules, or incremental mining of association rules, was first studied
in Refs. [7,11]. The FUP algorithm was proposed ta update the assaciation rules in a database when new trans-
actions were added 1o the datahase. Tt stnres the counts of all the large itemsets found in a previous mining oper-
ation to reduce the work of generating candidate large itemsets. FUP2 is a generalization of FUP. It can update
the existing association rules when transactions are added and deleted from the databasel®]. Both FUP and FUP2
are efficient.

The above algorithms all discover association rules at a single concept level. The problem of mining multi-
ple level association rules was studied in Ref. [127]. It extended the existing single level zssociation rule mining
algorithms and explored the techniques for sharing data structures and intermediate results across levels. A sim-
ilar work was reported in Ref. [13]. It discovered assceiation rules at any level of the taxonomy by extension of

the Apriori algorithm.

(za~16) 7] ,

Parallel mining of association rules ,» meta rule guided mining of multidimensional association rules

L8] have also been studied recently.

mining of spatial association rules

As a whole, researchers in KDD pay much attention to developing and implementing efficient data mining
techniques , while studies on knowledge representation in KDD are seldom reported™*™*, To make the knowl-
edge mined from databases understandable and similar to the description of human experts, we need a represen-
tation that can integrare quantitative knowledge and qualitative knowledge and handle uncertainty with random-
ness and fuzziness. In Refs. [23,24], a linguistic cloud model was presented to meet these requirements.. The
mathematical description of a cloud integrates the fuzziness and randomness of linguistic terms in & unified way.
Knowledge representation based on this model bridges the gap between qualitative knowledge and quantitative
knowledge. Mapping between quantitatives and qualitatives knowledge becomes much easier and
interchangeablet?*],

The rest of this paper is organized as follows. In Section 1, we describe the linguistic cloud model and ex-
tend it to two- or multi-dimensional ones. In Section 2, we explore the application of the model to tmine associa-
tion rules at any higher level of conceptual hierarchies from a spatial database by tmeans of Apriori algorithm.
An experimental result is given to show the discovered association rules at higher levels mined from a Chinese

geospatial and economic database. The conclusions are briefed in Section 3.
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1 A Linguistic Cloud Model

1.1 Linguistic atoms and compatibility functions

Our point of departure in this paper is to represent linguistic terms in logical sentences or rules. We imagine
a linguistic variable that is semantically associated with a list of zll the linguistic terms within a universe of dis-
course. For example, “age” is a linguistic variable if its values are “young”, “middle age”, “gld”, “very old”,
and so forthy rather than the natural numbers. In the more general cases, a linguistic variable is a quintuple;

(X, T () UsSsCx(uld}
X is the name of the variable. 7'(x) is the term-set of X that is, the collection of its linguistic velues. Uis o
universe of discourse. S is a syntactic generator that gencrates the terms in T'(x). Cx () is 4 compatibility func-
tion. It denotes the rclationship between a term # in T (x) and U. More precisely, the compatibility function
maps the universe of discourse into the interval [0,1] for each = in U/,

The compatibility value has 2 relationship with both fuzzy logic end probability. Consider a set of linguistic
terms T in a universe of discourse U/, for example, the linguistic term “young” in the interval [0,100]. The
compatibility of “28 yvears old™ with “young” is 0. 7. With the fuzzy logic peint of view, the compatibility value
“0. 7" is an indication of the partial membership with which the element “age-value 28” belongs to the fuzzy con-
cept “voung”. To understand the relationship with prebability on the other hand, the correet interpretation of
the compatibility value “0. 7”7, given by one’s conception, is that it is merely subjective indication. Human
knowledge does not conform to such a fixed crisp membership degree “0. 7” at “age-value 2Z8”. But there is
always a tendency showing that the membership degree at “age-value 28” is a stable random number, under
which a subjective prabability distribution is obeyed. The degree of compatibility takes on randotn values itself.
This type of randomness is adhered to the fuzziness.

Regarding syntactic generation, we shall usually assume that a linguistic variable is structured in the sense
that it is associated with two rules. The first is the atom generator rule. It specifies the manner in which a lin-
guistic atom, which cannot be sliced into any smaller parts, may be generated. The second, the semantic rule,
specifies a procedure for computing composite linguistic terms, based on linguistic atoms.

In addition to linguistic atoms, a linguistic term may involve connectives (such as “and”, “or”, “either”.,
and “neither”}, the negation (“not”} and the hedges (such as “very”, “more or less”, “completely”, “guite”,
“fairly”, “extremely” and “somewhzt™). The lingnistic connectives, hedges and negation may be treated as
(some form of) soft operators that modify the meaning of their operands—— linguistic atoms, in a soft comput-
ing fashion to become composite linguistic terms. That is the business of the semantic rule.

1.2 The concept of linguistic clouds

Cloud model is a model of the uncertain transition between & linguistic term of a qualitative concept and its
numerical representation. In chort, it is a model of the uncertain transition between gualitatives and guantita-
tives.

Let I/ be the set I = {a}, as the universe of discourse, and T a linguistic term associated with {J. The
membership degree of # in U to the linguistic term T’y Cr{(u), is a random number with a stable tendency.
Cr{u) takes the values in [0,1]. A compatibility cloud is a mapping {rom the universe of discourse {/ to the unit
interval [0,1]. That is,

Crlud:U>[0,1], ¥ u €U u—Crlu).

Figure 1 shows appropriate compatibility clouds for the linguistic terms “about 20”, “teenager” and “twen-

ty-something” from the term-set of the linguistic variable “Age”. The geometry of the compatibility cloud is a

great aid in understanding the uncertsinty of the fransition between a linguistic term and its numerical
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representation. First of all, the mapping from all # €U 1o the interval [0,1] is a one-point to multi-peint transi-

tion, producing a compatibility cloud, rather than a membership curve. Traditionally, the membership [unction

of a fuzzy set is a one-point to one-point mapping from a space U7 to the unit interval [0,1]. After the mapping
the uncertzinty of an element belonging to the fuzzy concept becomes certain to that degree, a precise number,

The uncertain characteristics of the original concept are not passed on to the next step of processing al all, Sec-
ondly, any particular drop of the cloud may be paid lirtle atzemion to. However, the toral shape of the cloud,
which is visible, elastic, boundless and movable, is most important, That is why we use the terminclogy
“cloud” to name it. Thirdly, the MEC (mathematical expecied curve) of a compatibility cloud may be coﬁsid-

ered as its membership function from the fuzzy set theory point of view. Finally, the definition has effectively
integrated the fuzziness aml tandomness of a linguistic term in a unified way.
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Various linguistic terms for the linguistic variable “Age”
1.3 Digital characteristics of a cloud

The normal compatibility clouds are most useful in representing linguistic atoms because normal distribu-

tions have been supported by results in every branch of both social sciences and natura] sciences. A normal com-
patibility cloud characterizes the qualitative meaning of a linguistic atom with three digital charac:eristics:
A(Ex ,En,D)
where Ex, En, and D are the expected value, entropy and deviation of the cloud respeetively. A given set {Ez,
En,D} uniquely defines a particular compatibility cloud A.

The expected value Ex of a compatibility cloud is the position at {7 corresponding to the center of gravity of
the cloud. In other words, the ¢lement Ex in the universe of discourse is fully compatible with the linguistic
atom A, It is very easy to determine Ez in practical applications.

The entropy En of a linguistic atom is a measure of the fuzziness of the concept within the universe of dis-

course. The entropy of a linguistic atom is defined by the bandwidth of the MEC (mathematicai expected
curve) of the normal compatibility cloud showing how many elements in the universe of discourse could be

accepted to the linguistic atom. The MEC of the normal compatibility cloud to a linguistic atom A is:

_ T (u—Ex)?
JMEC_,,'.'M)—e)q:;L SEn? .
The deviation I} is a measure of randomness of the compatibility function. Looking at the normal compari-
bility cloud in detail we see that its thickness is uneven. Close to the waist, the degree of compatibility is most

dispersed, while at the top and bottom the focusing is much better. Therefore, the maximum deviation D really
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comes from the randomness of the compatibility degree at the waist part of the cloud.

It should be noticed that the top, bottom, and waist of a cloud, however, do not need to be precisely de-
fined at all. The three digital characteristics are good enough to represent a normal compatibility cloud.
1.4 Two-Dimensional and multi-dimensional linguistic clouds

Following the above ideas, we extend the linguistic cloud model to two-dimensional one. Let U be the set
U={z,y}, as the universe of discourse, and 7" a linguistic term associated with U. The membership degree of u
in U to the linguistic term T, Cr(x,¥), is a random number with a stabletendency. Cr(x,y) takes the values in
[0,1]. A two-dimensional compatibility cloud is a mapping from the two-dimensional universe of discourse U to
the unit interval [0,1]. That is,

Cr(x,3):U—~[0,1], ¥V (z,3) EU(xz,y)+Cr(z,y).

The concept of 2-D clouds is pictured as three-dimensional graphics. Figure 2 is a surface plot of a 2-D
cloud corresponding to the linguistic term “central”. We can see that it is like a grave mound or a hill, it is
smooth and slopes gently at the top and foot, but it is rugged and rough at the hill-side. This indicates that the
degree of compatibility is more dispersed at the hill-side, while more focused at the top and foot. Therefore, the

2-D cloud is the natural extension of the 1-D cloud.

Fig.2 A 2-D cloud corresponding to the linguistic term “central”

Suppose the two dimensions of a universe of discourse are independent, then the two-dimensional normal
compatibility cloud for a linguistic term in the universe is characterized with six digital characteristics
A(E.:E.Enx.Dx,Ey.Eny,Ibt)
where Ex and Ey are the expected values, Enx and Eny are entropies, and Dz and Dy are the deviations in the
two dimensions z and y respectively. Similar to that in one-dimension case, (Ex,Ey) corresponds to the center
of gravity of the 2-D cloud. Enz and Eny are the measures of the fuzziness of the concept. They are defined by
the bandwidths of the MES (mathematical expected surface) of the 2-D cloud. The MES of the 2-D normal

compatibility cloud to a linguistic atom is:

—Er)? )2
MESA(x.y)=exp[—%—[%’-fch)+%)—]]o

where Dz and Dy are the measures of randomness of the two-dimensional compatibility function.

The projection of an MES to the z— y plane is an ellipse (or a circle if Enx equals Eny). When the axes of
the ellipse are not parallel to = and y axes respectively, we may add a digital characteristic # to describe the
cloud which is the angle between the corresponding axes. This cloud is referred to as rotated cloud, while the
unrotated cloud is considered to be standard cloud. Figure 3 shows the shadows of the drops of a rotated cloud.
If (zisyisp4) are the drops of a standard 2-D cloud, then (z';,y'is ) are the drops of the rotated cloud, where

(z'i5y':) are computed as follows,
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z'i={(x:— Ex)cosf— (y:— Ex)sinf+Ex,
&' ;= (x; — Ex)sinf+ (y:— Ey)cosf-+ Ey.
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Fig. 3 Shadows of a rotated 2-D cloud

We can extend the linguistic cloud model to multi-dimensional one further. Suppose a universe of discourse

has » dimensions that are independent from each other. The n-dimensional normal compatibility cloud for a lin-
guistic term in the universe is characterized with 3z digital parameters ;

ACE ) Eny D+ EsvEny Dy o v v EwsEngaD,)y
where E,. E;,..., E,are the expected values, En,, Eny,»... » En,are the entropies which represent the fuzzi-
ness of the concept, and D,, D,,..., D, are the deviations which are the randomness measures of the concept.
The MEHS (mathematical expected hyper surface) of the multi-dimensional normal compatibility cloud to a lin-
guistic atom is:

z —E)?
MEHSA(Ilq.sz... gIn)ﬂCXp[“'%' (I‘ETK)].

im1

The tweo- and multi-dimensional cloud models are mainly used for two purposes in data mining : knowledge
representation and soft computing. For example, “southeast” is represented by a 2-D cloud, and “warm color”
is represented by a 3-D cloud because a color is composed of three components; red, green and blue. The soft
“and” operation of “high education” and “high income” can be computed by a 2-D cloud model. The issue of
cloud model based soft computing will be discussed in a further coming paper.
1.5 Cloud generators

Given three digital characteristics Ex, En, and I to represent a linguistic atom, the generator could pro-
duce as many drops of the cloud s you like. All the drops ohey the properties described above. Figure 4(a)
shows a 1-D cleud generator. Correspondingly, given six digital characteristics Ex, Enxz, Dz, Ey, Env, and
Dy, to represent a two-dimensional linguistic atom, the 2-D cloud generator could produce any number of drops
of clouds. Cloud drops are three-dimensional points (a:vy:» )+ where (. ¥:)s obey a two-dimensional normal

_distribution and g's obey a one-dimensional distribution. Figure 4{h) shows a 2-D cloud generator.

Ey Eny Dy
VS
Er—o e |
En G drop(utj 4 2¢;) Bz -t QG |—=droplay s 31 s 24
D4 Dr—
(a) 1-D model (b) 2-D model

Fig. 4 Cloud generator
Cloud drops may be generated on conditions. Figure 5(a) shows the generator producing drops under a giv-
en numerical value ¥ in the universe of discourse, I7; while Fig. 5(b} shows the generator under the condition of

& given membership degree s All the drops generated in Fig. 5(a) have the same value « in the universe of
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Fig. 5 Generator on conditions {1-D modeb

discourse, and normal distributed membership degree p; whereas all the drops generated in Fig. 5(b) have the
same membership degree #, and normal distributed numerical values w; in the universe of discourse, A fuzzy rule
in a spalial database, such as, “If elevation is low, then the ruad density is high”, can be represented by 1wo
forward cloud geﬁerators under conditions of attribute values and membership degrees respectively.

Similarly. 2-D cloud generator may produce cloud drops on conditions. All the drops generated in Fig. 6(a)
have the same value (&,yY, and normmal distributed membership degrees r43 whereas all the drops generated in
Fig. 6(b) have the same membership degree g5 and normal distributed values (x sy along the membership el-

lipse related to pu

Ey Eny Dy Ey Eny Dy

A
-

Er— Er —

Enz oG droplx, 3.t 3 Fne—— CG —adropla;, 37 p)

Ir—t Dr—a

(o y) -:] p

(2} On the condition of(x, 3" (b) On the condition of “k”

Fig. 6 Generator on condition (2-D model)
It is natural to think about the generator mechanism in an inverse way. Given a limited set of drops,

drop; (i » ) » as samples of a compatibility cloud, the three digital characteristics Ex, En, and D could be pro-
duced to represent the corresponding linguistic atom (see Fig. 7(a}). The 2-D backward cloud generator is illus-
trated in Fig. 7¢(b}. The two kinds of atom generators may be called forward and backward generators respec-
tively, The ztom generators implemented in both hardware and software have been a patented invention in
China. The combination of the two kinds of generators can be used interchangeably to bridge the gap between

quantitative knowledge and qualitative knowledge.

By Eay Dy
s —Ex
dropluy s pid—d CG Y——sBr  dropa,m e ) —d OG | i
——D ——D
(a) 1-D model (b) 2-D madel

Fig. 7 Backward cloud generator
When rules are discovered for databases, we can use the uncertainty reasoning mechanism in cloud theory

for predictive data mining. When an input value enters the rule group, an uncertzinty value is produced by
combing the conditional forward and backward cloud generators and virtual cloud construction methods. A sig-
nificant advantage over the conventional prediction in data mining is that there is an inherent uncertainty in the

case of chaining rules,
2 Mining Association Rules with Linguistic Cloud Model

2.1 Problem description

Let I=1{f,+iss. .- +in} be a set of literals, called items. Let D be a database of transactions, where each
transaction T is a set of items such that T I. For a given itemset X7 and & given transaction T', we say that
T cortains X if and only if X=T. An association rule is an implication of the form X=>Y¥, where X&I, YCT
and XN Y =¢. The rule X=>Y holds in the databases D with confidence ¢ if ¢% of transactions in D that
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contain X also contain Y. The rule X=Y has support s in the database D if s% of transactions in D contain
xuy.

Given a database of transactions D, the problem of mining association rules is to generate all association
rules that have support and confidence greater than user-specified minimum support and minimum confidence
respectively.

2.2 Attribute generalization based on linguistic clouds and virtual clouds
2.2.1 Attribute Generalization

Generally, strong rules are likely to exist at high concept levels. Especially when attributes are numerical,
mining at the primary level may not generate strong rules with large minimum support and minimum confidence
thresholds or may generate many uninteresting rules with small thresholds. In this case, it is preferable to gen-
eralize the attributes first and then mine rules with the generalized data. This kind of attribute generalization
problem is also called continuous data discretization.

The commonly used method for continuous data discretization is to map the continuous data to nonoverlap-
ping intervals or areas, that is to say the attribute spaces are partitioned crisply. Overlaps between neighbor in-
tervals are not allowed in this method, so we refer to this method as crisp partition method. Figure 8(a) shows
a crisp partition of a two-dimensional attribute space. The space is partitioned into nine nonoverlapping rectan-
gles, each rectangle corresponds to a unique label which can be considered to be a linguistic term or a generalized
attribute value. But if an expert makes the partition, uncertainty is always adhered to it. In natural language,
the linguistic terms associated with a linguistic variable often overlap and have ambiguous boundary. For exam-
ple, “young” and “middle age” have some overlap, and it is difficult to partition them with a crisp age value.
Different experts may make different partitions on one hand, and these partitions have stable tendencies on the
other hand. Human beings can partition the attribute space flexibly and allow overlapping area between neigh-
bor linguistic terms. Obviously, the partition mechanism of human being is not mimicked by the crisp partition

method.

(a) Crisp partition (b) Soft partition
Fig. 8 Attribute space partition
With the linguistic cloud model, each attribute (or several relevant attributes) is considered as a linguistic
variable. Several linguistic clouds are given for each linguistic variable to represent linguistic terms of the lin-
guistic variable. The clouds may be interactively specified by the user or automatically generated by analyzing
the histogram of the attribute values. Our method allows overlapping area between neighbor clouds. Figure 8
(b) shows the same attribute space partitioned by nine 2-D linguistic clouds. At the center of each cloud, the
corresponding attribute value is fully compatible with the linguistic term, which is pictured by black points.
While at the middle of two neighbor clouds, the image is gray, it indicates the overlapping area and ambiguous

boundary between the two clouds. So the cloud based generalization method can be referred to as a soft partition
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method.

Suppose clouds Ay (Ex,»En D)5 A Bz Eng» D2y, .o s Av{Ezn, Eny,Dy) are given for a numerical at-
tribute. Input the attribute value » to the cloud generators CG,,CG;,. .. » CGx, and we get the outputs g,
fave .+ s vy Which are the compatibility values of w with A, A4z5. .., Ay respectively. The maximum compati-
bility value is retrieved. and u is assigned to 4, if g is the maximum, If two compatibility values, say g and g,
are both equal to the meximum, « is assigned tv A, or A; randomly. This mechanism is illustrated in Fig. 9. In
a similar way, two-dimensional aliribute space can be partitioned by 2-I} clouds softly. For example, = and y
positions are generalized to iwo-dimensional linguistic terms, “southwest”, “southeast”, “northeast”,

“central”, e,

We know from the properties of the cloud generator that s Eg—oF
Hprero s pn are random numbers with stable tendency, rather gﬂ | CG, P
than fixed values. Thereforc,s the same arttribute values within the _——T_
averlapping area of two neighbor clouds may be assigned to differ- Eny G, - MAX . "
cnt clouds ar different occasions. This is just like what human |2 Y | :::i_)
beings do, thus the soft partition method can mimic human
being's thinking better than the crisp partition merhod.

- . i
Not only numerical attributes but also the nominal and cate- | Exe—= Gy P
. ’ : . Iy — N

gorical attributes,. can he generalized with the cloud model, and T

the attributes can be generalized to multiple concept levels, This 1u -
Fig. ¢ The mechanism for assigning

is the work of virtual linguistic atoms and virtual clouds, . S
an altribute value 1o a linguistic atom

2. 2.2 Virtyal clonds

In our previous papers, we have introduced the concept of virtual linguistic atom and presented the virtual
cloud constroction methods® %), There are two kinds of linguistic clouds: floating clouds and synthesized
clouds.

Suppose we have two neighbor linguistic atoms, A, (Ex;, Eny, D)) and A,(Ex;, Eny,D;), over the same
universe of discourse IJ. A virtual floating linguistic atom, A(Ex,Er,D), may be located at any point « be-

tween the two clouds in I7 using the following definition:

Er=u,
En(Exy—Ex)+ En,(Ex—Ex)
En= .
. Ex,— Ex
D= N{Ezx,—Ez}+D,(Ex—Ex)
N Ex,—FEx, )

From a geometrical point of view, this definition satisfies the property that when the virtual cloud is float-
ing towards A,, it will be more and more affected by A,. while less and less affected by A;, till totally over-
lapped at the position of A,, and vice versa. In other words, the virtual cloud constructed at « between Ex, and
Ex; in the universe of discourse is a balance from both sides of A; and A; on a distance based weighting.

Floating clouds are very useful when the user specified clonds for a linguistic variable are not enough to
cover the universe of discourse. There may be some blank areas between some clouds. As a result, the maxi-
mum cotnpatibility values of the attribute within these areas must be equal to zero or very small. These attribute
vzlues can not be assigned to any cloud. Generating floating clouds in the blank areas can easily sclve the above
preblem, In fact, the only indispensable work of the user is to specify key clouds at the key positions. Other
tlouds can be automatically generated by the floating cloud construction method,

The mechanism of 1-D floating cloud construction can be exterded 10 2-D one naturally. Suppose we have

three neighbor linguistic atoms, A (Ex;,Enx;, Dx;sEy:; Eny,y Dv)» i=1,2,3, over the same 2-D universe of
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discourse UJ. Pi{(Ex,+Eyv1)+P:(Exz4Ey:) and P:(Ex;. Eys) form a triangle AP, P; P;. A 2-D virtual floating
linguistic atom, A(Ex,fnr,Dx,y,Eny,Dy) may be located at any point g(x,») in the triangle. The floating
cloud is constructed based on the following idea: points (Ex s Eyi»2z.)» (Exss Eve 220+ (Exss Eysrzs) forma
plane, the z value at p(x,y) is determined by the intersection point of the plane and the line that passing
through p and perpendicular to the x—» plane, where z represents Enx, Eny, Dx and Dyv. The plane equation
i8;
r—Ex, y—Ew z—2

Er,—Ex, FEy,—Ey, z,—z| =0

Ex,—Exr, Ey,—Ey, =z;—=z
We can easily get the explicit representation by expanding the equartion and replacing = by Enx, Eny., Dx, Dy
respectively. We omit the expanding process here.

The 2-D virtual cloud is a balance for the three clouds. The closer tv one cloud, the more influence by that
cloud. Given the key clouds over a universe of discourse, a TIN (triangulated irregular network) can be auto-
matically constructed to contral the generation of floating clouds. When a point p(x.3) is given to generate a
floating cloud , the triangle which contains p is retrieved from the TIN first, and then the floating cloud is con-
structed by the three clouds corresponding to the vertices of the triangle.

A synthesized cloud is used to synthesize linguistic terms into a generalized one. For example, the concept
of “teenager” may be considersd as the parent node of the concepts “about 14 years old” and “about 18 years
old” in a concept hierarchy.

Suppose we have two neighbor linguistic atoms, 4,{(Ez,,En,.D ) and A,(Ez;,En;,D;), over the same
universe of discourse U. A virtual linguistic atom, A(Ex,En.D), may be created by synthesizing the two atoms
using the following definition: ‘

Fre E:rlgn: 1 +EJ',2En’z ,
En' -+ En',
En=En'.+Ex';,
D:D]En'l +D,En',
En' |+ En',
where En', and En'; are calculated as follows.

Suppose MEC,, (u} and MEC,, («) are the mathematical expected curves of A, and A, respectively. Let

MEC, (u), when MEC, ()32MEC, (a)
MECAl(u):{ . G =
) otherwise
MEC,, (w), when MEC, (uy2MEC, (@)
MECdz(u)={ ¢ o s
0, otherwise
then,
En'1=71__Z—_L[MEC’Al(u)du,
En'2=;E[MEC'A2(u)du.

vz

From a geometrical point of view, En, and Eun, are the areas covered hy MFECs and MECa, reduced by 2
{actor of 1/+/ 2x, Ex', and En, are the areas covered by MEC'A1 and MEC',@I2 reduced by a factor of 1/ v 2r.
MEC’,;] and MEC’AZ are the unoverlapped parts of MECa, and MEC,, whicli are created by cutting the curves at

the intersection point of the curves. So we call En’ and En'; entropy cuts. The synthesized cloud is the entropy
eut weighted average of the two clouds.

The 2-D synthesized clouds are constructed in a similar way. Suppose the two dimensions of a universe of
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discourse are independent, then we can ealculate the digital characteristics in two dimensions separately, 2-D
synthesized clouds also obey the properties described above from the geometrical poin of view.

If we use the mechanism of synthesized cloud construction recursively from low concept levels to high con-
cept levels, we ran get concepr hierarchies for linguistic variables. The higher the concept levels, the less the
number of linguistic atoms. Till the top level, there is only cne linguistic arom “any”.

In brief, the linguistic cloud model and the mechanism of virtual cloud construction provide a new solution
to data preprocessing for mining association rules. Combining the existing algorithms for mining association
rules with the concept hierarchies, we can mine association rules at any concept level or at multiple concept
levels.

2.3 Experiment and discussion

In order to verify the feasiblity and effectiveness of the linguistic cloud model in mining association rules,
we conducted experiment using a spatial database about the geospatial and economic information in China (see
Table 1). What we are interested in is the relation between the geospatial information and economic situation.
The task relevant data are extracted [rom the large databese by spatial guery, Tr has six attributes, «, y. eleva-
tion, road density, distance to the sea, and average income per year. The data size is about 800K bytes. The
locations x and y are planimetric rectangular conrdinates, which are transformed fram gengraphical coordinates
(longitudes and latitudes). The attributes are all numerical, among which road density is represented by the
average total road length per square kilometer. The spatisl database is managed by Geographic Information Sys-
tem, Arc/Info. The derail of spatial query of the spatial database is omitted here hecause of the space limita-
tion. After query, the task relevant data arc organized as a relational database or a relation table (see Table 1).

Table 1 The experimental database on Chinese genspatial and
economic data for mining association rules

city name . Y elovation road density distance to average income

(m/km?®) sea (km) per year

Shanghai 1081 702,29 2 420 920. 22 27.82 950. 0§ 19. 33 16 000
Guangzhou 349 979.58 1 450 967, 29 200. 41 916. 18 60. 06 18 000
Wenzhou 1 038 667,52 1 592 814,97 51,97 848. 49 24. 51 17 000
Beijing 549 675. 77 3 333 &17.10 29. 82 1 045. 66 146, 24 12 000
Changchun 1224 839.0% 3 828 302. 91 187.72 890, 34 458, 45 8 000
Huhehot 102 736. 67 3447 923.21 2300, 30 485. 0% 581. 90 7 500
Lanzhou —562 917. 30 2 877 368. 66 3 503.85 460. 90 1 429, 41 3 600
Xining - 828 68B. 23 2 972 462. 09 4 297. 27 402. 57 1 619. 54 4 800
Urumgi —1 818 150. 51 3 904 377. 85 3 603. 35 349.92 2 590,17 1900
Kuerle —1 979 809, 33 3676 153. 43 3501.82 178. 71 2 700,18 3 800
Zhengzhou 292 923. 52 2 706 200. 50 69. 83 911. 39 538,71 3 200
Laohekon 131 284. 70 %430 429.57 85, 35 398. 55 762. 52 4 200
Lhasa —1 865 €97.22 2 363 8064.17 6 202,52 280. 81 2 200. 32 4 800
Nagu —1780 113. 14 2 496 994. 96 5 857. 91 168. 97 2 058. 59 3 700
Changsha 292 923. 52 1 847 906. 39 208, 59 792. 15 T2Q.79 8 100
Xianning 435 563. 87 2 183 1R6. 66 175.14 581.12 A9R. 01 5 500

Since the attributes are zll numerical, there are lots of distinet velues for each atiribute, It is impossible o
discover strong association rules at the primary level directly. Therefore, we define linguistic atems for attribute
generalization. We consider r and y attributes as one linguistic variable “focation”, and specify cight 2-D lin-
guistic atems for it, such as “southwest”, “northeast”, “north by eest”, “southeast”, “northwest”, “north”.

“south” and “centrzl™, most of them are rotated clouds. Other aruributes are considered to be 1-D linguistic
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varizhles. Three linguistic atoms are defined for each attribute, such as “low”, “middle” and “high” for
“elevation”, “road demsity”, and “average income per vear”; “close”, “middle” and “far” for “distance to the
sea”, The linguistic atoms “low” and “close” are hall-down clouds, *high” and “far” zre half-up clouds as de-
scribed in Refs, [24,25]. Neighbor linguistic atoms for each linguistic variable have some gverlaps.

The attribute generalization process is straightforward and simple : the database is scanned only cnce, and
the consuming time is linear with the size of the database. After attribute generalization, many different tuples
at the primary level become identical at the higher concept level and are merged to one tuple, thus the database
shrinks prominently. A new attribute “count” is added into the generalized database to record the numbers of
primary tuples merged to it. This attribute is not treated as a “real” attribute when mining rules. 1t is just used
for counting the supports of the itemsets. The generalized and reduced database makes the succeeding process
easy and fast. Any existing algorithm for mining association rules, such as Apriori, can be applied to the gener-
alized database.

We developed the Aprion algorithm on PC. The implementation was slightly differeni from the standard
Apriori®™ in that it can deal with relational table directly so thet relational table need not be transformed to bina-
1y transactions®l. The generalized database is mined with rhe minimum support 6% and minimum confidence
75%. Eight large 4-itemsets are mined at the generalized database. Eight association rules arc generated with
the “average income per vear™ as the seccedent and the conjunction of other attributcs as the antecedent, The
rules can be described in the form of preduction rules, such as:

Rule 1. If location is “southeast”, road density is “high”, and distance to the sea is “close™, then average

income is“high”.

Rule 2. If locarion is “north by east”, road density is “high”, and distance to the sea is “close”, then aver-

age income is “high”.

Rule 3. Tf location is “northeast”, road density is “high”, and distance to the sea is

‘middle”, then average
income 15 “middle”.

Rule 4. If location is “north”, road density is “middle”. and distance to the sea is “middle”. then average

income is “middle”.

Rule 5. [f location is “northwest”, road density is “low”, and distance to the sea is “far”, then average

income is “low”.

Rule 6. If location is “central”, road density is “high”, and distance ta the sea is “middle”, then average

income is “middle”.

Rule 7. If location is “southwest”, road density is *low”, distance to the sea is “far”, then average income

- is low.
Rule 8, If location is “south”, road density is “high”, distance to the sea is “middle”, then average income
is “middle”. i

These rules are visualized as ellipses with different colors gradually changing to gray from the centers of the
ellipses (see Fig. 10). The numbers marked on the ellipses arc the rule numbers.

As intermediate results, large 2-itemsets and 3-itemsets are discovered during the mining process. The
association rules generated from them are also interesting and useful. For example, the following rules demen-
strate the relation between the road density and elevation and location. The rules are visualized in Fig. 17.

Rule 1. If elevation is “low”, then road density is “high”.

Rule 2, If elevation is "high”, then road density 1s “low”.

Rule 3. If elevation is “middle” and location is “nurthwest”, then road density is “low”.

Rule 4. If elevation is “middle” and location is “north”, then road density is “middle”.

In order to discover multi-level association rules. we use the virtual cloud construction methed to generalize
the attribute “location ” further. Two virtual clouds are generalized by synthesizing “northwest” and
“southwest” to “the west”, “south” and “central” to “south and central China”. As a resuit, the eight rules in
Figure 10 are reduced to six rules, in which rules 1, 2, 3, 4 are the same, rules 5, 7 and rules 6, 8 are
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generalized to the following new rule 5 and rule 6 respectively. The six rules are visualized in Fig. 12.
Rule 5. If location is “the west”, road density is “low”, and distance to the sea is “far”, then average
income is “low”.
Rule 6. If location is “south and central China”, road density is “high”, and distance to the sea is

“middle”, then average income is “middle”.

Fig. 10 Discovered association rules for “average income”

Fig. 11 Discovered assoctation rules for “road density”

Fig. 12 Discovered association rules for “average income” at a higher concept level
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It should be noted that these rules are uncertain in that the supports and confidences are slightly different at
different occasions. ‘That is to say, because of the properties of the linguistic clouds and the overlaps of neighbor
clouds, the attribute generalization results in different generalized relation tables in which the counts of the
tuples are slightly different at different occasions. 1f we use the conventional generalization method, we simply
specify several thresholds for the attributes. The generalized relation table is identical at any occasion, and so
are the rules. This crisp partition metheod ignores the uncertainty in the generalization process. Therefore, the
cloud based generalization method is superior 1o the conventional method in holding uncertainties. The above
results show the effectiveness of the linguistic cloud model for the preprocessing in mining association rules.
That is, the cloud model based generalization can mimic human being®s thinking, while making the discovered
knowledge robust.

The attribute generalization based on the cloud model is siraight{lorward and efficient, Aprior is efficient,
and the combination of them is a two-step process: attribute generalization first and rule mining next. Therefor-
e, the whole process is efficient. Of course, the attribute generalization method can be combined with any exist-
ing efficient algorithm for mining association rules at any abstract level or at multiple concept levels. Mining
multiple level association rules can be carried out in top-down or bottom-up manner. The concept hierarchies are
sutomatically generated based on the mechanisms of synthesized cloud censtruction, the user should specify
enough linguistic atoms at a relatively low level.

The extensive study of the linguistic cloud model and the combination or integration with the other associa
tion rule mining algorithms, such as incremental mining algorithms, parallel mining algorithms, etc., are the
furure directions of our work. For example, we can specify the minimum support and minimum confidence as
linguistic atoms to hold the uncerrainty in the process of association rule mining, however we specified the two
thresholds as fixed values in the experiment.

In the mean time, the linguistic cloud model and the attribute generalization methad provide a genersl way
for data preprocessing in KDD. For example, the concept hierarchy generation method can he combined with
attribute oriented induction method™*** 1o discover many kinds of knowledge. The integration of the linguistic

cloud model with the other KIDD algorithms is also an important issue for further study.
3 Conclusion

Mining of asscciation rules is an impertant task in KDD. The linguistic cloud model is introduced to en-
hance the existing algorithms. The two-dimensional and even multi-dimensional linguistic cloud models are pre-
sented as the extension of the previous 1-I) model. The mathematical representation of 2-D linguistic atoms with
six digital parameters for uncertainty is given to explore the essential uncertainty with both fuzziness and ran-
domness. The model is used to generalize attribute values for data preprocessing of mining association rules,
Cloud model based generalization allows the overlapping area between neighbor linguistic terms, and it is a soft
partition of attribute spaces that can mimic human being’s thinking better than the crisp partition method. The
mechanism of virtual cloud construction provides a general way for attribute generalization at multiple concept
levels. Combining the cloud model based generalization method with Apriori algerithm can mine association
rules at any concept level or at multiple concept levels. The experiment shows the benelits of effectiveness, effi-

ciency and flexibility of the linguistic cloud model for mining asscciation rules.
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