主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2022年专刊出版计划 微信服务介绍 最新一期:2021年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
张献,贲可荣,曾杰.基于代码自然性的切片粒度缺陷预测方法.软件学报,2021,32(7):16-0
基于代码自然性的切片粒度缺陷预测方法
A Code Naturalness Based Defect Prediction Method at Slice Level
投稿时间:2020-09-13  修订日期:2020-10-26
DOI:10.13328/j.cnki.jos.006261
中文关键词:  软件质量保障  缺陷预测  代码自然性  切片粒度  语言模型  交叉熵  深度学习
英文关键词:software quality assurance  defect prediction  code naturalness  slice granularity  language model  cross-entropy  deep learning
基金项目:国家安全重大基础研究计划项目(613315)
作者单位E-mail
张献 海军工程大学 电子工程学院, 湖北 武汉 430033 tomtomzx@foxmail.com 
贲可荣 海军工程大学 电子工程学院, 湖北 武汉 430033  
曾杰 海军工程大学 电子工程学院, 湖北 武汉 430033  
摘要点击次数: 481
全文下载次数: 117
中文摘要:
      软件缺陷预测是软件质量保障领域的一个活跃话题,它可以帮助开发人员发现潜在的缺陷并更好地利用资源.如何为预测系统设计更具判别力的度量元,并兼顾性能与可解释性,一直是人们致力于的研究方向.针对这一挑战,提出了一种基于代码自然性特征的缺陷预测方法——CNDePor.该方法通过正逆双向度量代码和利用质量信息对样本加权的方式改进语言模型,提高了模型所得交叉熵(CE)类度量元的缺陷判别力.针对粗粒度缺陷预测存在难以聚焦缺陷区域、代码审查成本高的不足,研究了一种新的细粒度缺陷预测问题——面向语句的切片级缺陷预测.在此问题上,设计了4种度量元,并在两类安全缺陷数据集上验证了度量元和CNDePor方法的有效性.实验结果表明:CE类度量元具有可学习性,它们蕴涵了语言模型从语料库中学习到的相关知识;改进的CE类度量元的判别力明显优于原始度量元和传统规模度量元;CNDePor方法较传统缺陷预测方法和已有的基于代码自然性的方法有显著优势,较先进的基于深度学习的方法具有可比性性能和更强的可解释性.
英文摘要:
      Software defect prediction is an active research topic in the domain of software quality assurance. It can help developers find potential defects and make better use of resources. How to design more discriminative metrics for the prediction system, taking into account performance and interpretability, has always been a research direction that people devote to. Aiming at this challenge, a code naturalness feature based defect predictor method (CNDePor) is proposed. This method improves the language model by taking advantage of the bidirectional code-sequence measurement and weighting the samples by using the quality information, so as to increase the defect discrimination of the cross-entropy (CE) type metrics obtained from the model. Aiming at the shortcomings of coarse-grained defect prediction (e.g. difficulties in focusing on defect areas and high cost of code reviews), a new fine-grained defect prediction problem, statement-oriented slice level defect prediction, is studied. Four metrics are designed for this problem, and the effectiveness of these metrics and CNDePor are verified on two types of security defect datasets. The experimental results show that:CE-type metrics are learnable, which contain the relevant knowledge learned from the corpus by language model; the improved CE metrics are significantly better than the original metrics and traditional size metrics; the CNDePor method has significant advantages over the traditional defect prediction methods and an existing method based on code naturalness, and own comparable performance and stronger interpretability than a state-of-the-art mothed based on deep learning.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利