主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2022年专刊出版计划 微信服务介绍 最新一期:2021年第2期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
李晓光,魏思齐,张昕,杜岳峰,于戈.LFKT:学习与遗忘融合的深度知识追踪模型.软件学报,2021,32(3):16-0
LFKT:学习与遗忘融合的深度知识追踪模型
LFKT:Deep Knowledge Tracing Model with Learning and Forgetting Behavior Merging
投稿时间:2020-08-23  修订日期:2020-11-06
DOI:10.13328/j.cnki.jos.006185
中文关键词:  智慧教育  知识追踪  深度神经网络  学习行为  遗忘行为
英文关键词:intelligent education  knowledge tracing  deep neural network  learning behavior  forgetting behavior
基金项目:国家自然科学基金联合基金(U1811261)
作者单位E-mail
李晓光 辽宁大学 信息学院, 辽宁 沈阳 110036  
魏思齐 辽宁大学 信息学院, 辽宁 沈阳 110036  
张昕 辽宁大学 信息学院, 辽宁 沈阳 110036 zhangxin@lnu.edu.cn 
杜岳峰 辽宁大学 信息学院, 辽宁 沈阳 110036  
于戈 东北大学 计算机科学与工程学院, 辽宁 沈阳 110163  
摘要点击次数: 110
全文下载次数: 113
中文摘要:
      知识追踪任务旨在根据学生历史学习行为实时追踪学生知识水平变化,并且预测学生在未来学习表现.在学生学习过程中,学习行为与遗忘行为相互交织,学生的遗忘行为对知识追踪影响很大.为了准确建模知识追踪中学习与遗忘行为,本文提出了一个兼顾学习与遗忘行为的深度知识追踪模型LFKT.LFKT模型综合考虑了四个影响知识遗忘因素,包括学生重复学习知识点的间隔时间、重复学习知识点的次数、顺序学习间隔时间以及学生对于知识点的掌握程度.结合遗忘因素,LFKT采用深度神经网络,利用学生答题结果作为知识追踪过程中知识掌握程度的间接反馈,建模融合学习与遗忘行为的知识追踪模型.通过在真实在线教育数据集上的实验,与当前知识追踪模型相比,LFKT可以更好地追踪学生知识掌握状态,并具有较好的预测性能.
英文摘要:
      The knowledge tracing task is designed to track changes of students' knowledge in real time based on their historical learning behaviors and to predict their future performance in learning. In the learning process, learning behaviors are intertwined with forgetting behaviors, and students' forgetting behaviors have a great impact on knowledge tracing. In order to accurately model the learning and forgetting behaviors in knowledge tracing, a deep knowledge tracing model LFKT that combines learning and forgetting behaviors is proposed in this paper. To model such two behaviors, the LFKT model takes into account four factors that affect knowledge forgetting, including the interval between students' repeated learning of knowledge points, the number of repeated learning of knowledge points, the interval between sequential learning, and the understanding degree of knowledge points. The model uses a deep neural network to predict knowledge status with indirect feedbacks on students' understanding of knowledge according to students' answers. With the experiments on the real datasets of online education, LFKT shows better performance of knowledge tracing and prediction in comparison with the traditional approaches.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利