主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
李国良,周煊赫.面向AI的数据管理技术综述.软件学报,2021,32(1):0
面向AI的数据管理技术综述
Survey of Data Management Techniques for Supporting Artificial Intelligence
投稿时间:2019-09-03  修订日期:2019-11-28
DOI:10.13328/j.cnki.jos.006121
中文关键词:  数据管理技术  人工智能  声明性语言
英文关键词:data management technology  artificial intelligence  declarative language
基金项目:国家自然科学基金(61925205, 61632016)
作者单位
李国良 清华大学计算机系, 北京 100084 
周煊赫 清华大学计算机系, 北京 100084 
摘要点击次数: 706
全文下载次数: 323
中文摘要:
      人工智能技术因其强大的学习和泛化能力已经被广泛应用到各种真实场景中.然而,现有人工智能技术还面临着三大挑战.第一,现有AI技术使用门槛高,依赖于AI从业者选择合适模型、设计合理参数、编写程序,因此很难被广泛应用到非计算机领域;第二,现有AI算法训练效率低,造成了大量计算资源浪费,甚至延误决策时机;第三、现有AI技术强依赖高质量数据,如果数据质量较低,可能造成计算结果的错误.数据库技术可以有效解决这三个难题,因此目前面向AI的数据管理得到了广泛关注.本文首先给出AI中数据管理的整体框架,然后详细综述基于声明式语言模型的AI系统、面向AI优化的计算引擎、执行引擎和面向AI的数据治理引擎四个方面.最后展望未来的研究方向和挑战.
英文摘要:
      Artificial intelligence has been widely used in various scenarios due to its powerful learning and generalization ability. However, most of the existing AI techniques are facing three major challenges. First, existing AI techniques are hard to use for ordinary users, which depends on AI experts to select appropriate models, choose reasonable parameters and write programs, so it is difficult to be widely used in non-IT fields. Second, the training efficiency of existing AI algorithms is low, resulting in a lot of waste of computing resources, even delaying decision-making opportunities. Third, existing AI techniques are strongly dependent on high-quality data. If the data quality is low, it will make error decisions. The database technology can effectively solve these three problems, and AI-oriented data management has been widely studied. Firstly, this paper gives the overall framework of data management in AI, and then gives a detailed overview of AI-oriented declarative language model, AI-oriented optimization, AI-oriented execution engine and AI-oriented data governance. Finally, we provide the future research directions and challenges.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利