王强,江昊,羿舒文,杨林涛,奈何,聂琦.复杂网络的双曲空间表征学习方法.软件学报,2021,32(1):93-117 |
复杂网络的双曲空间表征学习方法 |
Hyperbolic Representation Learning for Complex Networks |
投稿时间:2019-09-09 修订日期:2020-04-12 |
DOI:10.13328/j.cnki.jos.006092 |
中文关键词: 复杂网络 双曲空间 表征学习 网络嵌入 机器学习 |
英文关键词:complex networks hyperbolic space representation learning network embedding machine learning |
基金项目:国家自然科学基金(U19B2004);中山市高端科研机构创新专项(181129112748101);广东省“大专项+任务清单”项目(2019sdr002) |
|
摘要点击次数: 1579 |
全文下载次数: 1459 |
中文摘要: |
复杂网络在现实场景中无处不在,高效的复杂网络分析技术具有广泛的应用价值,比如社区检测、链路预测等.然而,很多复杂网络分析方法在处理大规模网络时需要较高的时间、空间复杂度.网络表征学习是一种解决该问题的有效方法,该类方法将高维稀疏的网络信息转化为低维稠密的实值向量,可以作为机器学习算法的输入,便于后续应用的高效计算.传统的网络表征学习方法将实体对象嵌入到低维欧氏向量空间中,但复杂网络是一类具有近似树状层次结构、幂率度分布、强聚类特性的网络,该结构更适合用具有负曲率的双曲空间来描述.针对复杂网络的双曲空间表征学习方法进行系统性的介绍和总结. |
英文摘要: |
Complex networks naturally exist in a wide diversity of real-world scenarios. Efficient complex network analysis technology has wide applications, such as community detection, link prediction, etc. However, most complex network analytics methods suffer high computation and space cost dealing with large-scale networks. Network representation learning is one of the most efficient methods to solve this problem. It converts high-dimensional sparse network information into low-dimensional dense real-valued vectors which can be easily exploited by machine learning algorithms. Simultaneously, it facilitates efficient computation for subsequent applications. The traditional network representation embeds the entity objects in the low dimensional Euclidean vector space, but recent work has shown that the appropriate isometric space for embedding complex networks with hierarchical or tree-like structures, power-law degree distributions and high clustering is the negatively curved hyperbolic space. This survey conducts a systematic introduction and review of the literature in hyperbolic representation learning for complex networks. |
HTML 下载PDF全文 查看/发表评论 下载PDF阅读器 |