主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2020-2021年专刊出版计划 微信服务介绍 最新一期:2020年第7期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
毛新军,杨硕,黄裕泓,王硕.自主机器人多智能体软件架构及伴随行为机制.软件学报,2020,31(6):1619-1637
自主机器人多智能体软件架构及伴随行为机制
Towards Software Architecture and Accompanying Behavior Mechanism of Autonomous Robotic Control Software Based on Multi-agent System
投稿时间:2019-08-14  修订日期:2019-10-23
DOI:10.13328/j.cnki.jos.005996
中文关键词:  自主机器人控制软件|Structure-in-5|多智能体系统|软件架构|伴随行为
英文关键词:CSAR|structure-in-5|multi-agent system|software architecture|accompanying behavior
基金项目:国家自然科学基金(61379051,61532004)
作者单位E-mail
毛新军 国防科技大学 计算机学院, 湖南 长沙 410073
复杂系统软件工程重点实验室(国防科技大学), 湖南 长沙 410073 
xjmao@nudt.edu.cn 
杨硕 国防科技大学 计算机学院, 湖南 长沙 410073  
黄裕泓 国防科技大学 计算机学院, 湖南 长沙 410073  
王硕 国防科技大学 计算机学院, 湖南 长沙 410073  
摘要点击次数: 653
全文下载次数: 1158
中文摘要:
      自主机器人是一类由计算机软件控制的信息物理系统,如何支持该类机器人在开放环境下的有效和协调运行,是自主机器人控制软件(control software of autonomous robot,简称CSAR)研究与实践面临的一项重要挑战.基于组织理论的思想,采用Structure-in-5的组织架构模式,提出了基于多智能体的CSAR的软件架构MaRSA(multi-agent robotic software architecture),通过独立抽象CSAR的行为规划、分发、执行等软构件,并显式加强这些构件间的交互,从而为自主机器人行为的有效规划和协调实施奠定架构基础;提出了基于MaRSA架构的伴随行为机制,从因果性、时序性和按需性等3个方面建立了机器人观察行为和任务行为间的伴随关系,并基于分步规划和动态决策的思想,设计并实现了伴随行为的自主决策算法DAAB(decision algorithm of accompanying behaviors).分别在仿真环境和实际机器人环境下设计了对比性实验,结果表明:与主流的反应式行为决策算法和BDI式概率决策算法相比较,基于MaRSA和伴随行为机制的DAAB算法所生成的伴随行为规划在开放环境下具有可行性和更高效的执行效率.
英文摘要:
      Autonomous robot is a kind of complex cyber-physical system controlled by software. To support robots to operate in open environment in an effective and cooperative way is a great challenge for the researches and practices of control software of autonomous robot (CSAR). Adopting organization theory, this paper presents a multi-agent software architecture MaRSA (multi-agent robotic software architecture) that takes structure-in-5 organization style for CSAR. The software components of plan, dispatch, and execute behaviors of robot are independently encapsulated and explicitly separated, which lays architecture foundation for the flexible cooperation and continuous interactions among these components. The paper further proposes an accompanying behavior mechanism to enrich the interactions of observation actions and task actions, defines three kinds of accompanying relationships on the causality, temporal, and on-demand viewpoints, as well as designs a two-step dynamic decision algorithm DAAB (decision algorithm of accompanying behaviors) for planning accompanying behaviors. Two experiments are conducted in simulation robot environment and the real robot environment respectively, and the results show that comparing with the reactive behavior planning algorithm and BDI-based probabilistic planning algorithm, the proposed algorithm DAAB can produce plans that operate in open environment with high efficiency and low efforts to accomplish tasks.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利