李崇轩,朱军,张钹.条件概率图产生式对抗网络.软件学报,2020,31(4):1002-1008 |
条件概率图产生式对抗网络 |
Conditional Graphical Generative Adversarial Networks |
投稿时间:2019-05-30 修订日期:2019-07-29 |
DOI:10.13328/j.cnki.jos.005924 |
中文关键词: 深度生成模型 产生式对抗网络 概率图模型 弱监督学习 条件模型 |
英文关键词:deep generative model generative adversarial network graphical model weakly-supervised learning conditional model |
基金项目:国家自然科学基金(61620106010,61621136008);博士后创新人才拔尖计划 |
|
摘要点击次数: 910 |
全文下载次数: 778 |
中文摘要: |
产生式对抗网络(generative adversarial networks,简称GANs)可以生成逼真的图像,因此最近被广泛研究.值得注意的是,概率图生成对抗网络(graphical-GAN)将贝叶斯网络引入产生式对抗网络框架,以无监督的方式学习到数据的隐藏结构.提出了条件概率图生成对抗网络(conditional graphical-GAN),它可以在弱监督环境下,利用粗粒度监督信息来学习到更精细而复杂的结构.条件概率图生成对抗网络的推理和学习遵循与graphical-GAN类似的方法.提出了条件概率图生成对抗网络的两个实例.条件高斯混合模型(conditional Gaussian mixture GAN,简称cGMGAN)可以在给出粗粒度标签的情况下从混合数据中学习细粒度聚类.条件状态空间模型(conditional state space GAN,简称cSSGAN)可以在给定对象标签的情况下学习具有多个对象的视频的动态过程. |
英文摘要: |
Generative adversarial networks (GANs) have been promise on generating realistic images and hence have been studied widely. Notably, graphical generative adversarial networks (graphical-GAN) introduce Bayesian networks to the GAN framework to learn the underlying structures of data in an unsupervised manner. This study proposes a conditional version of graphical-GAN, which can leverage coarse side information to enhance the graphical-GAN and learn finer and more complex structures, in weakly-supervised learning settings. The inference and learning of conditional graphical-GAN follows a similar protocol to graphical-GAN. Two instances of conditional graphical-GAN are presented. The conditional Gaussian mixture GAN can learn fine clusters from mixture data given a coarse label. The conditional state space GAN can learn the dynamics of videos with multiple objects given the labels of the objects.. |
HTML 下载PDF全文 查看/发表评论 下载PDF阅读器 |