主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2019年第9期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
卜依凡,刘辉,李光杰.一种基于深度学习的上帝类检测方法.软件学报,2019,30(5):1359-1374
一种基于深度学习的上帝类检测方法
God Class Detection Approach Based on Deep Learning
投稿时间:2018-08-31  修订日期:2018-10-31
DOI:10.13328/j.cnki.jos.005724
中文关键词:  代码坏味  软件重构  深度学习
英文关键词:code smell  software refactoring  deep learning
基金项目:国家重点研发计划(2016YFB1000801);国家自然科学基金(61690205,61772071,61472034)
作者单位E-mail
卜依凡 北京理工大学 计算机学院, 北京 100081  
刘辉 北京理工大学 计算机学院, 北京 100081 liuhui08@bit.edu.cn 
李光杰 北京理工大学 计算机学院, 北京 100081  
摘要点击次数: 288
全文下载次数: 283
中文摘要:
      上帝类是指某个承担了本应由多个类分别承担的多个职责的类.上帝类违背了分而治之的基本思想以及单一职责的设计原则,严重影响软件的可维护性和可理解性.但上帝类又是一种比较常见的代码坏味.因此,针对上帝类的检测与重构一直是代码重构领域的研究热点之一.为此,提出了一种基于深度神经网络的上帝类检测方法.该方法不仅利用了常见的软件度量,而且充分利用了代码中的文本信息,意图通过挖掘文本语义揭示每个类所承担的主要角色.此外,为了解决有监督深度学习所需的海量标签数据,提出了一种基于开源代码构造标签数据的方法.最后,基于开源数据集对所提出的方法进行了实验验证.实验结果表明,这些方法优于现有的上帝类检测方法,尤其是在查全率上有大幅度的提升(提高了35.58%).
英文摘要:
      God class refers to certain classes that have assumed more than one functionality, which obey the single responsibility principle and consequently impact on the maintainability and intelligibility of software system. Studies, detection and refactoring included, of god class have always attracted research attentions because of its commonness. As a result, a neural network based detection approach is proposed to detect god class code smell. This detection technology not only makes use of common metrics in software, but also exploits the textual information in source code, which is intended to reveal the main roles that the class plays through mining text semantics. In addition, in order to solve the massive labeled data required for supervised deep learning, an approach is proposed to construct labeled data based on open source code. Finally, the proposed approach is evaluated on an open source data set. The result of evaluation shows that the proposed approach outperforms the current method, especially the recall has been greatly improved by 35.58%.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利