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Abstract:  This paper presents a flavor of OT named Independent Oblivious Transfer in the Public-Key 
Public-Randomness Model (PKPR IOT, in short), with respect to the open problem given by De Santis. First it gives 
a non-interactive implementation of IOT, which can independently and obliviously transfer polynomial messages. 
The implementation is based on Quadratic Residuosity Assumption. Since it is limited to pre-fixed times, then 
another non-interactive implementation of IOT is presented, which can independently transfer messages for any 
times. The second implementation requires the sender to be honest and the receiver couldn’t make his choice 
independently. So, the third interactive implementation is given. It is based on the BBCS oblivious transfer scheme 
of Rivest, and is rather more efficient than the above two non-interactive counterparts. All the three 
implementations presented are secure against receivers with unlimited computational power. 
Key words:  oblivious transfer; zero-knowledge proof; quadratic residuosity assumption; PKPR model; GM 

encryption 

摘  要: 针对 De Santis 给出的开放问题,提出了公开密钥公开随机性模型下的独立的不经意传输(简称 PKPR 
IOT).首先,给出了 IOT 的一个非交互式实现,它能够独立地不经意传输多项式条消息.该实现是基于二次剩余假设.
由于它受限于多项式次,所以又给出了 IOT的另一个非交互式实现,它能够独立地传输任意次消息.但是这个实现要
求发送者是诚实的,并且接收者不能独立地选择接收哪条消息.因此给出了第三个交互式的实现.它基于 Rivest 的
BBCS 不经意传输,并且比上面两个非交互式实现的效率高得多.这 3 种实现对于具有无限计算能力的接收者都是
安全的. 
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1   Introduction 

Since Rabin[1] first introduced oblivious transfer (OT) into cryptography in 1981, OT has been widely used in 
cryptography and becomes an important cryptographic primitive. It has already become the basis for realizing 
interactive protocols, such as bit commitments, zero-knowledge proofs, and general secure multiparty computation, 
and etc.[2,3] 

OT refers to several types of two-party protocols. One party is the sender named Alice, who has a string s to be 
sent, and the other party is the receiver named Bob. At the end of an execution of OT protocol, Bob either learns the 
string or gets nothing about s, and each of the two events happens with the same probability. However, Alice cannot 
figure out better than randomly guessing that whether Bob learns the string or not. In 1989, Bellare and Micali[4] 
presented a non-interactive implementation of Oblivious Transfer based on Discrete Log Assumption that is secure 
with respect to an all-powerful sender and a probabilistic polynomial-time receiver. 

There are great deals of variants of OT, such as 1-out-of-2 OT, k-out-of-n OT, committed OT, concurrent OT 
and etc. They have been studied extensively[4−9] and have been used in lots of cryptographic protocols[3,10]. Among 
all the variants, we are most concerned with the 1-out-of-2 OT. The notion of 1-out-of-2 Oblivious Transfer was 
devised by Even, Goldreich, and Lempel[11]. A 1-out-of-2 OT is from Alice whose input consists of two strings, s0 
and s1, to Bob who has a bit meaning which message to receive. At the end of an execution of the 1-out-of-2 OT, 
Bob only knows exactly one of the two strings, s0 or s1, and Alice can only guess with probability 1/2 which string 
of the two Bob gets. De Santis et al. presented a non-interactive implementation of 1-out-of-2 Oblivious Transfer in 
the PKPR Model in 1995, which relies upon the quadratic residuosity assumption and is secure against receivers 
with unlimited computational power[12]. 

The PKPR Model is a certain kind of model in which all the users share a random common string, choose and 
validate by themselves their own public and private keys without interacting with the other users. It doesn’t need 
any trusted center to protest against possible “cheating” by users. 

Zero-knowledge proof is used in their implementation, which is a cryptographic primitive as well. It was 
formalized by Goldwasser, Micali and Rackoff[13]. The proof system De Santis et al. used in their implementation is 
called non-interactive Zero-knowledge Proof System[14]. 

Their implementation can execute efficiently, but there is still a disadvantage, that is, for every transfer, the 
choice of Bob to receive a message is always the same. We cannot use this implementation to independently and 
obliviously transfer many pairs of messages with the same public information. If we need to obliviously transfer 
multi-pairs of messages, a naive method is to simply use their implementation of 1-out-of-2 OT repeatedly for 
multi-times. The result is that Bob will receive all the messages from the same channel. Then Alice can guess the 
channel from which Bob receives the messages in an all-or-nothing fashion, which is the same as that of a single 
OT. Here we want the channel Bob receives messages from to be independent and unpredictable to Alice at each 
time. If Alice learns Bob’s choice during some OT without knowing Bob’s secret, it doesn’t make any good for 
Alice to know his counterpart’s choices during other former or later transfers. Another way to implement this is that 
before every 1-out-of-2 OT, Bob publishes a new public file which consists of all the public information, and 
generates new corresponding secret information. Then from which channel Bob receives a message will be different 
every time. However, the frequent changes of public information will be costly and inconvenient. 

In this paper, we present a flavor of OT named Independent Oblivious Transfer in the Public-Key 
Public-Randomness Model (PKPR IOT). And to our knowledge, there has been no previous work on independent 
OT. With a PKPR IOT, the two parties can independently and obliviously transfer multi pairs of messages 
efficiently, without worrying about that information leakage for some or other OT will threaten the security of other 
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OT’s, supposed that Bob’s secret keys are still unrevealed to Alice. First we give a non-interactive implementation, 
within which Alice and Bob can independently transfer polynomial messages. Due to its limitation to polynomial 
times, we then present another non-interactive implementation within which the two parties could independently 
transfer messages for any times. But the sender is required to be honest and the receiver’s choice is not made totally 
on his own. Thus, we give a third interactive implementation. It needs an initialization step which is done once for 
all. This implementation is much more efficient than the other two. Compared with the OT scheme in Ref.[12], our 
first two implementations are at least the same efficient, and the third scheme is much more efficient. All the three 
schemes own the additional property of independence. 

In the next section, we mainly give some preliminary knowledge which will be used in IOT and introduce 
PKPR OT presented by De Santis et al. In Section 3, we present the Independent Oblivious Transfer in the PKPR 
Model, and give three implementations of it, two non-interactive and one interactive, along with the security and 
efficiency analysis of them. Conclusion about our work is given in Section 4. 

2   Preliminaries 

2.1   Basic notations 

We denote by |x| the length of x if x is a string, the length of the binary string representing x if x is an integer, or 
the absolute value of x if x is a real number. By the expression x||y we denote the concatenation of x and y if they are 
both strings. 

We say that a function f() is negligible if for all constants c, there exists an integer nc such that for all integers 
n>nc it holds that f(x)<n−c. 

If A(x) is a probabilistic algorithm with one input parameter, then for any input x, the notation A(x) refers to the 
probability space that assigns to the string σ the probability that A, on input x, outputs σ. If S is a probability space, 
then “x←S” denotes the algorithm which assigns to x an element randomly selected according to S. 

If p(·,·,…) is a predicate, the notation Pr[x←S;y←T;…;p(x,y,…)] denotes the probability that p(x,y,…) will be 
true after the ordered execution of the algorithms {x←S; y←T;…}. 

2.2   Facts 

A multitude of concepts and definitions in this paper are the same as those in Ref.[12]. Here we only list some 
facts. 

Fact 1: y is a quadratic residue modulo x if and only if y is a quadratic residue modulo for each of the prime 
divisors of x. 

Fact 2: Let p1,p2 are distinct primes and x=p1*p2, and y∈ , then we have (y|x)=(y|p*
xZ 1)*(y|p2). 

Fact 3: Let x be a Blum integer and let y1, y2∈ . Then QR*
xZ x(y1*y2)=QRx(y1)⊕QRx(y2). 

Note that this fact can be easily extended to general case. That is, let x be a Blum integer and let y1,y2,…, 

yn∈ , then QR*
xZ x(y1*y2*…*yn)=QRx(y1)⊕QRx(y2)⊕…⊕QRx(yn). 

2.3   Oblivious transfer 

OT was first introduced by Rabin[1], who gave an implementation based on the difficulty of factoring. OT is a 
protocol for two parties: the sender named Alice who has a string s to send, and the receiver named Bob. Both of the 
following two events are equally likely to occur at the end of an execution of the protocol: either Bob learns the 
string s, or Bob gets nothing about s. Moreover, at the end of the execution, Alice cannot tell with a non-negligible 
advantage whether Bob gets s or not. 

Bellare and Micali[4] presented in 1989 a non-interactive implementation of OT based on Discrete Log 
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Assumption that is secure with respect to an all-powerful sender and a probabilistic polynomial-time receiver. 

A variant of OT is the 1-out-of-2 Oblivious Transfer, which was introduced by Even, Goldreich, and 
Lempel[11]. In this protocol, Alice has two strings s0 and s1 to send. The following two events are equally likely to 
occur at the end of an execution of the protocol: either Bob learns the string s0, and doesn’t get any information 
about s1, or Bob learns the string s1, and doesn’t get any information about s0. Moreover, at the end of the execution, 
Alice cannot tell with a non-negligible advantage which string Bob gets. 

De Santis et al. presented a flavor of 1-out-of-2 OT, Public-Key Public-Randomness Oblivious Transfer (PKPR 
OT), which is based on quadratic residuosity assumption. In a PKPR OT, Alice and Bob share a random string σ and 
there are two channels used to transfer messages. A PKPR OT is a quadruple of algorithms (Key_Generator, Verify, 
Send, Receive), where Key_Generator and Send are efficient, and Verify and Receive are deterministic polynomial 
time. They should satisfy the following conditions: 

1. Meaningfulness: If Alice and Bob act according to the protocol, Bob will get the message he wants to 
receive with a quite high probability. 

2. Verifiability: If Bob generates the public file and private key correctly, the test whether the public file is 
valid can be passed with very high probability. 

3. 1-out-of-2: There is no way for Bob to construct a public file that has a non-negligible probability of 
being declared valid by Verify and that allows Bob to obtain information on both strings sent by Alice. 

4. Obliviousness: Alice has no way to guess better than at random that which of the two channels is open 
(in another word, Alice cannot know which of the two strings is received by Bob). 

The detail of the implementation given by De Santis et al. is in Ref.[12]. They put forward an open problem in 
that paper, that is, how to use the same public file to transfer multi-messages at the end of each transfer, and from 
which channel a message Bob gets is independent. With respect to the problem, we present Independent Oblivious 
Transfer, whose detail is given in the next section. 

3   Independent Oblivious Transfer 

3.1   Independent oblivious transfer 

We say an oblivious transfer is independent, if which of these two channels is open at each transfer is different 
and independent. Even if the adversary (usually Alice) knows Bob’s choice during some or other transfer, without 
the knowledge of Bob’s secret keys, he still cannot figure out Bob’s choices during other transfers better than 
randomly guessing. Hence, which of the two channels is open to Bob at each OT is unpredictable for Alice. A PKPR 
IOT should satisfy not only the above four conditions which a PKPR OT should satisfy, but also the property of 
independence. 

If we simply repeat the 1-out-of-2 Oblivious Transfer using the same public file, this method is only partially 
content to the requirements of the above open problem. However, the channel Bob gets messages from will be the 
same during each transfer. That is, Bob will either get all the messages from Ch0 or learn all the messages from Ch1. 
If Alice knows which channel Bob gets the message from during a certain 1-out-of-2 OT, it means that Alice will 
know all the choices of Bob during all the transfers, no matter before or after that. The probability that Alice can 
figure out successfully all the channels open to Bob during the whole multi OT’s is 1/2, exactly the same with that 
in a single OT. That is, Alice can succeed in an all-or-nothing fashion. In our implementation which is presented in 
the following, the probability that Alice guesses successfully for all OT’s that which of the two channels is open 
will be reduced to 1/2k, where k is the number of OT’s. Even if Alice knows which channel Bob gets the message 
from in some or other 1-out-of-2 OT, he will have no better way than randomly guessing to know Bob’s choices in 
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the 1-out-of-2 OT’s before or after that, supposed that Bob’s private key is still secret to Alice. Of course, if Alice 
knows Bob’s private key, he will know all Bob’s choices with probability 1. 

Another method to independently and obliviously transfer multi-messages is to use a single complete 
1-out-of-2 OT for each pair of messages. Before transferring a pair of messages, Bob generates a new public file 
including new channels, and a new corresponding secret key. Alice then uses the new channels for oblivious transfer 
messages. Obviously, at each time which of the two channels is open will be different and independent, but the 
frequent changes of public files and secret keys will be costly and inconvenient. It will waste much bandwidth. 

3.2   First non-interactive implementation 

Here, we present a scheme within which we can independently and obliviously transfer polynomial pairs of 
messages using the same public file. 

This implementation of independent oblivious transfer is non-interactive in the PKPR model, which is based on 
that of De Santis et al.[12]. It needs a non-interactive perfect zero-knowledge proof system (A,B) for the language of 
pairs (x,y), where x is a Blum integer and y is a quadratic non residue modulo x. (A,B) for moduli of length n needs 
a reference string σ of n3 bits. Moreover, the program of the prover A can be performed in probabilistic polynomial 
time provided that the factorization of x is available. In our implementation, the GM encryption system[15] is used as 
well, which was also used in Ref.[12]. And we still follow the denotation GM_E, GM_D to denote the encryption 
and decryption of GM system. 

The implementation of PKPR IOT consists of Key_Generator, Verify, Send and Receive. Key_Generator and 
Verify algorithms initialize the public file and Send and Receive algorithms actually perform the IOT. Algorithm 
Receive is the same with that in Ref.[12]. 

We denote by Alice the Sender and Bob the Receiver respectively. They share a reference string σ. Alice and 
Bob first agree on an integer k in advance, which denotes the number of messages to be transferred and is 
polynomial in n (otherwise, the whole process cannot be done in polynomial time). Bob then constructs two 
channels Ch0, Ch1, a validation Val and a secret key Key using the algorithm Key_Generator and publishes Ch0, Ch1, 
Val and z1,z2,…,zk. Bob can compute z=z1*z2*…*zk mod x once and for all. We’ll refer to a pair of channels along 
with its validation and z1,z2,…,zk as the public file for PKPR IOT. In our implementation of PKPR IOT, algorithms 
Verify, Send and Receive can access the public file. 

Before the first time to obliviously transfer a pair of messages to Bob, Alice verifies Bob’s public file by 
checking that Verify(σ,Ch0,Ch1,Val)=VALID. This verification only needs to be done for once. Then Alice can 
directly send a pair of messages to Bob without validity check of Bob’s public file. If he wants to send a pair of 
messages, s0 and s1, Alice randomly chooses a distinct j from {1,2,…,k} and computes and sends two processed 
messages msg0=Send(Ch0,s0,j)||j and msg1=Send(Ch1,s1,j)||j. To retrieve one of the two messages, Bob first extracts j 
from the two processed messages, and checks that whether j is used before. If j was ever used, Bob rejects this 
transfer, and asks Alice to re-transfer the pair of messages. Else, he then computes z′=z/zj mod x and b=QRx(z′). 
Then Bob can remove the last |k| bits of msgb, denote by bgms ′ , and compute Receive(Key, ). Followed are the bgms ′

formal descriptions of these algorithms. 
Algorithm 1. Key_Generator(σ,k). 
Input: An n3-bit reference string σ and an integer k; 

1. Construct channels and secret keys. 
Randomly select two n-bit primes p, q≡3 mod 4, and set x=p*q. 

Randomly select y∈NQRx and z1,z2,…,zk∈ .1+
xZ  

2. Construct validation. 
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Run the algorithm A on input (x,y) using the reference string σ and obtaining Proof as output. 

3. Set z=z1*z2*…*zk mod x. 
Set Ch0=(x,z*y mod x), Ch1=(x,z), Val=(Proof,y), Key=(p,q) 

Output: (Ch0, Ch1, Key, Val, z1,z2,…,zk). 
Algorithm 2. Verify(σ,Ch0,Ch1,Val). 
Input: An n3-bit reference string σ and a public key consisting of two channels Ch0=(x0,v0), Ch1=(x1,v1) and a 

validation Val=(Proof, y); 

1. Verify that v1=z1*z2*…*zk mod x0, x0=x1, v0=v1*y mod x0 and y,v0∈ ; 1+
xZ

2. Run algorithm B on input (x0, y), the reference string σ, and the string Proof. 
Output: If all checks are successfully passed, then output VALID, else INVALID. 
Algorithm 3. Send(Ch,s,j). 
Input: A channel Ch=(x,v), a binary string s and an integer j(1≤j≤k); 
Output: msg=GM_E(x,v/zj mod x,s)||j. 
Algorithm 4. Receive(Key,msg). 
Input: A key Key=(p,q) and a message msg; 
Output: s=GM_D(msg,p,q). 
Now, we are going to analyze the security and efficiency of this non-interactive implementation of independent 

oblivious transfer. 
3.2.1   Security 

Theorem 1. Under the Quadratic Residuosity Assumption, the above quadruple of algorithms (Key_Generator, 
Verify,Send,Receive) is a PKPR Oblivious Transfer. 

Note: The proof of Theorem 1 is similar to that in Ref.[12]. For the sake of clarity, we give a whole proof here, 
including the parts that are the same with those in Ref.[12]. 

Proof:  First of all, the above algorithms all run in polynomial time. Notice that, in the algorithms 
Key_Generator and Receive, the factorization of x is known. 

Meaningfulness: Now, as y is a quadratic non-residue, then by Fact 2, exactly one of z and zy mod x is a 
quadratic non-residue and thus, by the properties of the encryption scheme, the corresponding string si will be read 
by the receiver. 

Verifiability: If the two channels are constructed by the Key_Generator algorithm, then x is a Blum Integer, 
each of z1,z2,…,zk has Jacobi Symbol +1 modulo x and y is a quadratic non-residue modulo x. Since z=z1*z2*…* zk 
mod x, according to Fact 2, z has Jacobi Symbol +1 as well. Thus it follows from the completeness of (A,B) that 
Verify will output VALID with overwhelming probability. 

1-out-of-2: Suppose that there exists an algorithm that violates the 1-out-of-2 condition. Two cases need to be 
considered. If y is a quadratic non-residue modulo x and x is a Blum integer, then, by Fact 2, one of z and zy is a 
quadratic residue modulo x. Thus, for the properties of the encryption scheme GM_E, no information about the 
string encrypted with a quadratic residue can be obtained from its encryption. 

Suppose now that y is a quadratic residue modulo x or that x is not a Blum integer. In this case, for the 
soundness of the proof system (A,B), it follows that with a high probability, the algorithm Verify will output 
INVALID. 

Obliviousness: Though Alice knows z1,z2,…,zk, by Quadratic Residuosity Assumption and Fact 3, he cannot 
know the quadratic residuosities of z1,z2,…,zk and z′=z/zj mod x. Therefore Alice cannot know which of the two 
channels is open in a PKPR IOT. 
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Now we prove that if there exists an efficient algorithm Adv(σ,Ch0,Ch1,Val,k) which, for some d>0 and 

infinitely many n, violates the obliviousness condition, we can construct an algorithm which contradicts the QRA. 
As (A,B) is a non-interactive perfect zero-knowledge proof system, there exists an efficient simulator algorithm 

S for (A,B). On inputing a pair (x,y), where x is a Blum integer and y is a quadratic non-residue modulo x, S 
generates a pair (σ,Proof) where σ is a random string of n3 bits and Proof has the same distribution of A’s output on 
the inputs σ and (x,y). 

We exhibit an algorithm Q(·,·) that decides quadratic residuosity using Adv and S as subroutines. The following 
is the formal description of Q(·,·). 

Algorithm 5. Q(x,z). 

Input: x∈BL(n), z∈ ; 1+
xZ

Construct Channels and Validations. 
Randomly choose y in NQRx; 
Randomly choose k=poly(n); 
Randomly choose z1,z2,…,zk−1 in Adv; 
Run algorithm S on input (x,y) obtaining a pair (σ,Proof) as output; 
Set z=z1*z2*…*zk−1 mod x; 
Set Ch0=(x,z′*y mod x), Ch1=(x,z′) and Val=(Proof,y); 
Set b′=Adv(σ,Ch0, h1,Val,k); 
If k is odd, set b=b′; else set b=1−b′. 

Output: b. 

Next we are going to compute Pr[x←BL(n);k←poly(n);z← :Q(x,z,k)=QR1+
xZ x(z)]. Suppose that QRx(z)=1. Thus 

any string sent using channel Ch1 will be received by Bob. As Adv guesses b with probability at least 1/2+n−d, in this 
case, since z1,z2,…,zk−1 are quadratic non residue modulo x, if k is odd, then the quadratic residue of z modulo x is 
the same as that of z′; otherwise, the quadratic residue of z modulo x is just opposite to that of z′. So the algorithm Q 
will return the correct quadratic residue of z modulo x with a probability the same as that of Adv. The same 
reasoning applies to the case QRx(z)=0. Therefore, for some d>0 and infinitely many n, 

Pr[x←BL(n);k←poly(n);z← :Q(x,z,k)=QR1+
xZ x(z)]≥1/2+n−d, 

which contradicts the Quadratic Residuosity Assumption. □ 

Next, we prove that this implementation satisfies the independence property. 
Theorem 2. The above quadruple of algorithms (Key_Generator,Verify,Send,Receive) is an Independent 

Oblivious Transfer. 
Proof:  When Alice sends a pair of messages, he randomly selects a distinct j from the set {1,2,…,k}, and then 

computes z′=z/zj mod x. Since j is different at each time, z′ is different as well. Therefore, the channel from which 
Bob gets message is different. Because which of the two channels is open depends on the quadratic residuosity of z′ 
and z1,z2,…,zk are independently chosen, from which channel Bob gets a message at each time will be independent 
as well. □ 

Combined the above two theorems, we can say our implementation is really a PKPR IOT. 
There is one thing we need to say more. This implementation is secure against receivers with unlimited 

computational power. Since y is a quadratic non-residue modulo x, by Fact 3, we have that either z*y or z is a 
quadratic residue modulo x. It also holds for z*y/zj and z/zj. In a GM bit encryption GM_E(x,v,c), where c is a bit to 

be encrypted, the encryption of c is r2vc mod x, where r is a randomly selected number in . If v is a quadratic *
xZ

residue modulo x, no matter what c is, the encryption of c is a quadratic residue modulo x. The encryption of bit 0 
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and the encryption of bit 1 are in the same distribution, no one can distinguish them, no matter how powerful he is. 
3.2.2   Efficiency 

Here we are going to discuss the efficiency of our implementation of IOT. We compare our implementation 
with that of PKPR OT in Ref.[12]. 

The Key_Generator step requires additional k−1 chooses of zi and the computation of z, which can be done in 
polynomial time. The Verify step requires additional verification of the validity of z. The other verifications are the 
same with those of Ref.[12]. Both the two steps are a little more costly than those of Ref.[12], but they are in a 
once-and-for-all fashion. During the following k transfers, both parties can directly use the public file and secret key 
which are generated during this step, and Alice doesn’t need to verify Bob’s public file before every transfer. 

While sending a pair of messages, what Alice needs to do additionally is to choose a distinct j from {1,2,…,k}. 
When receiving a message, what Bob needs to do additionally is to extract a j from the processed messages and 
check that whether this j is ever used before. There are efficient algorithms to do these. The additional workload is 
much lower than that of regenerating a new public file and corresponding secret key. Our implementation saves a 
certain bandwidth of communication. 

With the above discussion, we can say that our implementation of PKPR IOT is more efficient than simply 
using a single complete 1-out-of-2 OT for each pair of messages. 

This implementation of PKPR IOT can be used to oblivious transfer multi-messages independently, but it is 
limited to polynomial times and it’s only partially content to our need. Hence, we present another non-interactive 
implementation, within which we can obliviously transfer messages for any times independently. In the 
implementation, the sender is required to be honest and behave according to the protocol. 

3.3   Second non-interactive implementation—Honest-Sender PKPR IOT 

This implementation implements to obliviously transfer any number of messages independently between the 
two parties. In this independent oblivious transfer, we require that the sender is honest and behaves totally in 
accordance with the protocol, so we also call it honest-sender IOT. 

Key Generation and algorithm Verify are exact the same with those in Ref.[12]. The public key of Bob is z, 
whose quadratic residuosity b is unknown to Alice. Bob’s private key is the factorization of x, p and q. In order to 
send message s0 and s1 to Bob through channels (x,v0) and (x,v1), Alice first randomly selects r from , and sets 

=v

1+
xZ

0v′ 0*r mod x, =v1v′ 1*r mod x. Then She uses GM encryption procedure with input x, , s0v′ 0 and x, , s1v′ 1 for 
each channel. After that, Alice sends the encryptions and r through the channels. In order to receive a message, Bob 
first extracts r from the messages he received and computes c=b⊕QRx(r). Then he can get the message sc by using 
GM decryption procedure to decrypt the cipher text he received from channel Chc. The detail of each algorithm is as 
follows. 

Algorithm 6. Key_Generator(σ,k). 
Input: An n3-bit reference string σ and an integer k; 

1. Construct channels and secret keys. 
Randomly select two n-bit primes p,q ≡ 3 mod 4, and set x=p*q. 

Randomly select y∈NQRx and z∈ .1+
xZ  

2. Construct validation. 
Run the algorithm A on input (x,y) using the reference string σ and obtaining Proof as output. 

3. Set Ch0=(x,z*y mod x), Ch1=(x,z), Val=(Proof,y), Key=(p,q), b=QRx(z) 
Output: (Ch0,Ch1,Key,Val,b). 
Algorithm 7. Verify(σ,Ch0,Ch1,Val). 
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Input: An n3-bit reference string σ and a public key consisting of two channels Ch0=(x0,v0), Ch1=(x1,v1) and a 

validation Val=(Proof,y); 

1. Verify that x0=x1, v0=v1*y mod x0 and y,v0∈ , 1+
xZ

2. Run algorithm B on input (x0,y), the reference string σ, and the string Proof. 
Output: If all checks are successfully passed, then output VALID, else INVALID. 
Algorithm 8. Send(Ch,s). 
Input: A channel Ch=(x,v), a binary string s; 

Randomly select r∈ , and set v′=v*r mod x 1+
xZ

Output: msg=GM_E(x,v′,s)||r. 
Algorithm 9. Receive(Key,msg). 
Input: A key Key=(p,q) and a message msg; 
Output: s=GM_D(msg,p,q). 

3.3.1   Security 
The security analysis is similar to that of the first non-interactive implementation. Meanfulness and Verification 

can easily be checked. If Alice is honest, she randomly selects r from . By Fact 3, we know that only one of z*r 1+
xZ

and z*y*r is quadratic non-residue modulo x. Hence, Bob can only get one of the two messages, for he knows p and 
q, the factorization of x. 1-out-of-2 property is satisfied. Since the factorization of x is unknown to her, according to 
quadratic residuosity assumption, Alice could not know the quadratic residuosity of z better than randomly guessing, 
as well as the quadratic residuosity of r. So, she could not know which channel is open to Bob with non-negligible 
advantage. This satisfies the obliviousness condition. During each transfer, r is independently and randomly chosen 
by Alice, therefore, QRx(r)⊕b differs each time. Independence property is also met. As the same with the first 
implementation, this scheme is also secure against receivers with unbounded power. 
3.3.2   Efficiency 

The efficiency is almost the same with that of Ref.[12], except one random selection, one multiplication and 
one quadratic residuosity computation plus for each transfer. Hence, we can say, this implementation is almost as 
efficient as that of Ref.[12]. 

3.4   Interactive implementation 

The above second non-interactive implementation has its own advantage than the first one, but still, there is 
some drawbacks with it. First, the sender Alice needs to be honest and behave totally according to the protocol. 
Otherwise, Alice may suit herself to choose r. Similarly, she selects a random number w from  and sets r=w1+

xZ 2  
or r=−w2. In this case, Alice knows the quadratic residuosity of r. And in each transfer, she chooses such a r with 
the same quadratic residuosity, thus, if she knows which channel is open to Bob in some or other transfer, it means 
that Alice could know all Bob’s choices, which is the same with the general oblivious transfer. Another shortcoming 
is that, Bob could not choose which message to receive totally according to his will. His choice depends on not only 
z whose quadratic residuosity Bob knows, but also r Alice selects. Alice’s selection imposes on Bob’s choice. With 
respect to the above considerations, we present the third implementation, which is interactive, and is based on the 
BBCS oblivious transfer protocol of Ref.[16]. 

The BBCS oblivious transfer protocol relies on a third party, Ted, who is trusted by both Alice and Bob. It 
includes three steps: SETUP, REQUEST and REPLY. In SETUP step, Ted privately gives Alice two random k-bit 
strings r0, r1, provided that the length of a message is k-bit. Then he flips a bit d, and privately gives Bob d and rd. 
Now Ted’s work is all done. In the REQUEST step, Bob determines a bit c, which means that he wants to obtain mc. 
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He privately sends Alice the bit e=c⊕d. Then in the REPLY step, assumed that the messages Alice wants to transfer 
are m0 and m1, Alice replies Bob by privately sending Bob the values f0=m0⊕re and f1=m1⊕r1−e. At this time, Bob 
gets mc by computing mc=fc⊕rd. 

It is clear that Alice has no information about c, and Bob knows no information about m1−c. But the main 
disadvantage of this protocol is that a trusted third party is involved. Usually, a third party trusted by both parties is 
not easy to find. It is better if the SETUP step can be done only between Alice and Bob. Alice and Bob 
communicate, without any other party, to setup their common and private parameters. 

In order to make the protocol work in public-key public-randomness model, we substitute the original SETUP 
step with a PKPR oblivious transfer between Alice and Bob. In the new SETUP step, Alice randomly selects two 
strings r0, r1, Bob flips a bit d. Then, Alice and Bob start a PKPR oblivious transfer. Any PKPR OT can be used 
here. In our implementation, we prefer the PKPR OT of Ref.[12]. Alice uses the two channels to transfer r0, r1 to 
Bob, and Bob receives rd. At this time, Alice knows r0, r1, and Bob owns d and rd. Formal description is in Fig.1. 

 
 
 
 
 
 
 
 

Bob computes
mc=fc⊕rd 

Bob flips a bit c, and
computes e=c⊕d 

Bob
Bob gets rd

d←{0,1}r0,r1←{0,1}k 
SETUP:

Alice 

f0, f1

e 

PKPR OT: r0, r1

REQUEST:

REPLY:
Alice computes
f0=m0⊕re, 
f1=m1⊕r1−e

Fig.1  PKPR IOT based on BBCS OT of Ref.[16] 

3.4.1   Security 
Given that the PKPR oblivious transfer used in this scheme is secure, we can say, this scheme is also secure. 

After the PKPK OT, Bob knows rd, but he doesn’t have any information about r1−d; Alice does not get any 
information about d. After receiving e from Bob, she could not know c with any advantage, and c is theoretically 
secure to her. Also, e doesn’t leak any information concerning d to Alice. As Bob knows only one of r0, r1, he can 
merely get mc from fc. With regard to m1−c, he could get no information about it, for he doesn’t know r1−d. In each 
transfer, c is randomly chosen by Bob on his own, so Bob’s choice is independent of that in any other transfer. 
Supposed that Bob’s secret is kept private, even if Alice knows the c in some transfer, all the c’s in other transfers 
are still safe for Bob. Obliviously, this interactive scheme is secure against receivers with unbounded power as well. 
3.4.2   Efficiency 

The SETUP step could be done in a once-for-all fashion. It is the initialization of the whole independent 
oblivious transfer scheme. Once it is done, the parameters can be used for all the later message transferring. In each 
transfer, there are only four exclusive or operations. Thus, we say, this scheme is rather more efficient than the 
above two schemes. 

4   Conclusion 

In this paper, we define an independent oblivious transfer and present three implementations of IOT in the 
PKPR Model, two non-interactive and one interactive. The first non-interactive implementation can be used to 
independently and obliviously transfer messages for pre-fixed polynomial times. It only satisfies our need partially. 
The second non-interactive implementation can satisfy our need of oblivious transferring for any number of times, 
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whereas, the sender is required to be honest and the receiver could not make his choice totally on his own. Then, we 
present the third implementation which is interactive. The two parties cooperate to initialize the independent 
oblivious transfer scheme first, and then they can interactively and obliviously transfer messages for any times they 
wish. Compared with the OT scheme in Ref.[12], our first two implementations are at least almost the same 
efficient, and the third scheme is much more efficient than that in Ref.[12]. Besides, all the three schemes own the 
additional property of independence. 
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