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Abstract: In analog VLSI design, 2-dimensional symmetry stack and block merging are critical for mismatch 
minimization and parasitic control. In this paper, algorithms for analog VLSI 2-dimensional symmetry stack and 
block merging are described. Several theoretical results are obtained by studying symmetric Eulerian graph and 
symmetric Eulerian trail. Based on them, an O(n) algorithm for dummy transistor insertion, symmetric Eulerian trail 
construction and 2-dimensional symmetry stack construction is developed. The generated stacks are 2-dimensional 
symmetric and common-centroid. A block merging algorithm is described, which is essentially independent of the 
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topological representation. Formula for calculating the maximum block merging distance is given. Experimental 
results show the effectiveness of the algorithms. 
Key words: analog VLSI; 2-dimensional stack; block merging; symmetric Eulerian graph 

摘 要: 在模拟集成电路设计中,关于 X 轴和 Y 轴同时对称的 Stack,以及模块之间的合并,对于增加器件之间的匹

配和控制寄生是至关重要的.描述了模拟集成电路二轴对称 Stack 生成算法和模块合并算法.通过对于对称欧拉图

和对称欧拉路径的研究,得出了多项理论结果.在此基础上,提出了时间复杂度为 O(n)的伪器件插入算法、对称欧拉

路径构造算法和二轴对称 Stack 生成算法.生成的 Stack,不但关于 X 轴和Ｙ轴对称,而且具有公共质心(common- 
centroid)的结构.还描述了模块合并算法,给出了计算最大合并距离的公式.该算法本质上是独立于任何拓扑表示的.
实验结果验证了算法的有效性. 
关键词: 模拟集成电路;二维 Stack;模块合并;对称欧拉路径 
中图法分类号: TP302  文献标识码: A  

1   Introduction 

Analog blocks typically constitute only a small fraction of components on mixed-signal ICs and emerging 
systems-on-a-chip (SoC) designs. But due to the increasing levels of integration available in silicon technology and 
the growing requirement for digital systems to communicate with the continuous-valued external world, there is a 
growing need for quality of analog integrated circuits. Although many efforts have been made in this field, the 
analog layout is still a hard and time consuming task which has a considerable impact on circuit performance. 
Asymmetries and device mismatch can easily upset the critical precision of component, and together with the 
parasitics associated with the interconnections they can introduce intolerable performance degradation. Device 
merging, i.e. placing devices such that diffusion geometry is shared between electrically connected devices, is a 
very important technology for analog VLSI layout to dramatically reduce the parasites as well as area occupation. 
Merging a series transistor is called stacking. 

Many researches have been done to explore the device merging optimizations during the analog layout in the 
past years. KOAN/ANAGRAM II[1~3] keeps the macro cell style, and merges the common area when the nodes are 
exactly placed together during the simulated annealing. This kind of approach not only puts a heavy burden on the 
simulated annealing, but also can not achieve the interdigitated and common-centroid structure[4], which is often 
used by manual layout. The stack generator in Ref.[5] generates optimum stacks that satisfy the performance 
constraints, using a path partitioning algorithm. However, because it attempts to enumerate all optimal stacks, 
runtime can be extremely sensitive to the size of the problem. Symmetry and matching constraints can greatly prune 
the search, but the basic algorithm has exponential time complexity. Reference [6] gives an approach using 
simulated annealing to randomly generate a stack. An algorithm with O(n) is present in Ref.[7], which can generate 
optimal stack without symmetry constraints, or an approximate solution under symmetry constraints. Based on the 
previous approach, Ref.[8] proposes parasitic and mismatch models for the basic analog circuit blocks such as 
differential pair, current mirror, and cascade. 

However, there exist two problems. First, they can only generate a 1-D stack but not a 2-axial symmetry stack. 
1-D stacks are sometimes slim and long, which is not desirable during placement. Furthermore, Refs.[9,10] have 
shown that the 2-axial symmetry minimizes the mismatch and cancels out press, process and thermal gradients in 
every direction. So, a 2-axial stack is more desirable. Second, during the stacking, only transistors with similar 
channel width can be generated in one stack. The different stacks can not be merged during placement. 

During placement, several non-slicing topological representations can be used, which include Sequence 
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Pair[11,12], BSG[13,14], O-tree[15], and Corner Block List (CBL)[16], etc. Among these representations, some analog 
VLSI constraints such as matching and symmetry[17,18] and other useful constraints[19~21] have been implemented. 

In this paper, we first present an O(n) algorithm to generate 2-axial symmetry stacks. Several stacks with 
different ratios are generated for one group of transistors. These stacks can be chosen during the placement. Then, 
an algorithm for block merging is given, which can be used to merge stacks with different channel width transistors. 
The block merging algorithm is implemented on Sequence Pair, but it is essentially independent of any topology 
representation. This paper is organized as follows. The 2-axial symmetry stack generation algorithms are described 
in Section 2. Section 3 presents the block merging algorithms. Section 4 gives the experimental results and finally 
Section 5 concludes the paper. 

2   Stack Generation Algorithms 

2.1   Basic stacking strategy 

Circuit schematic should be modeled in a format suitable for a graph algorithm to solve the layout problem 
effectively. Our strategy is similar to that introduced in Refs.[1,7]: 

(1) Divide the circuit into partitions with respect to the device type and bias node (body node in MOS 
transistors). 

(2) Perform device folding: split large transistors into smaller parallel transistors.  
(3) Perform further partitioning to reduce the variation on the module widths in a partition, only the transistor 

with the same width is in the same partition. If there are self symmetry devices, further partition must apply to 
isolate the self symmetry devices from other devices because only the partition that is fully symmetric and has not 
self-symmetry edge can generate common-centroid 2-axial symmetry stacks. 

(4) Generate stacks that implement each partition. 
In analog CMOS circuits, as in digital standard-library leaf-cells, only transistors of the same type (e.g. 

NMOS), which share a common well, can be stacked (i.e. their common diffusion nodes can be merged in the layout 
to minimize the diffusion area). In addition, in analog circuits, it is fairly common to have transistors of the same 
type which require distinct body potentials, for example, to optimize the noise performance. Such transistors have 
their own isolated wells and cannot be stacked with other transistors of the same type. Therefore in the first step, we 
put such transistors in different partitions. We also allow the designer to specify explicitly to have two or more 
transistors in the same stack.  

In the second step, large transistors are folded into fingers to minimize the diffusion capacitances as well as to 
balance the aspect ratio of the resulting module. This can be done either automatically[3] or manually by the 
designer. It is important to note that, in this stacking strategy, transistor folding is done a priori. The stack 
generation algorithm is given the fixed-width modules as input – it does not dynamically fold transistors. This is in 
contrast to tools such as KOAN[1~3], in which the overall optimization loop treats stacking, folding and placement 
simultaneously.  

In the third step, the partitions are examined again to account for variations in module widths. Only the 
transistors with the same width can be put in the same partition. Furthermore, the symmetrical constraints are 
examined. The result of partition should be fully symmetrical and the self symmetrical parts are isolated. 

In the fourth step, the 2-dimensional stack generation algorithms (Subsections 2.2 and 2.3) operate on each 
circuit partition separately. Several stacks of different ratios are generated for each partition. Choosing one of the 
stacks with different ratios for the same partition is added to move the set of the simulated anneal during placement. 
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2.2   Finding symmetric Eulerian trail 

For the partition G=(V,E) that is fully symmetry, the first step to generate the 2-axial symmetry stacks is to 
construct the symmetry Eulerian graph by adding dummy edges. At most one self symmetric dummy edge can be 
added. Based on this symmetry Eulerian graph, symmetric Eulerian trail can be built. Now, we give some 
definitions. 

Definition 1. A self symmetric vertex is one on the symmetric axle whose symmetric vertex is itself (Fig.1(a)). 
Definition 2. A self symmetric edge is an edge to which the two vertices associated are symmetric to each 

other. And this edge crosses the symmetric axle and whose symmetric edge is itself (Fig.1(a)). 
Definition 3. A symmetric Eulerian trail (v1,v2,…,vn) is a trail symmetrically covering the graph, i.e., in the 

trail, vi and vn+1−i are symmetric to each other. 
From Definition 3, we can easily get the following lemma that is useful during the Eulerian trail construction. 
Lemma 1. Given the Symmetric Eulerian trail (v1,v2,…,vn), if n is an odd number, there are n−1 edges in the 

trail and there is no self symmetric edge. If n is an even number, (vn/2+1,vn/2+2) is a self symmetric edge. 
Now we show how to construct a symmetric Eulerian graph based on the fact that a symmetric Eulerian trail 

can be built. We first find all the vertices with odd degree. The degree of a vertex is the number of edges incident to 
it. For each odd degree vertex, there must be a symmetric vertex that is also odd degree. The following Lemma 2 
shows self symmetric vertex must be of even degree. Therefore, we only need to find out all the odd degree vertices 
on one side of the symmetric axle. All and only their symmetric vertices are also of odd degree on the other side of 
the symmetric axle. 

Lemma 2. Given a symmetry graph G=(V,E) and there is no self symmetric edge, if there are some self 
symmetric vertices, their degree must be even. 

Proof.  The proof is straightforward. Since there is no self symmetric edge, each edge incident to the self 
symmetric vertex must have a symmetric one incident to the same vertex. So, the degree of self symmetry vertices 
must be even. □ 

If the number of odd degree vertices on each side of the symmetry axle is even, two methods can be applied. 
Method-1: After connecting these odd degree vertices by adding dummy edges pair by pair on each side, there 

will be no odd degree vertex left in the partition (Fig.1(b)). Because all vertices are even degree and each edge on 
one side of the symmetric axle has a symmetric edge on the other side, a symmetry Eulerian trail can be constructed 
symmetrically and synchronously on both sides of the axle. And there are even edges in the trail.  

Method-2: Another method to connect these odd degree vertices is as follows. We connect these vertices pair 
by pair just as the previous method does except the last two pairs. For the last two pairs of odd degree vertices, we 
connect an odd degree vertex with its symmetric one by a self symmetric dummy edge and leave the other odd 
degree symmetry pair unconnected (Fig.1(c)). Let the self symmetry edge be (vn/2+1,vn/2+2) in the symmetric 

Eulerian trail. Then, the two vertices vn/2+1 and 
vn/2+2 are used as the start vertex on each side of 
the axle to construct the symmetric Eulerian trail. 
There are odd edges in the trail. 

(a) (c) 

Fig.1  (a) Self symmetric vertex and self symmetric edge;
(b) All the odd degree vertices are connected pair by pair;
(c) Two odd degree vertices leaved not connected.  

(b) 
Because previous two methods can generate 

trails with different number of edges, we 
generate both trails to be used by future stack 
generation. 

On the other hand, if the number of odd 

  



 刘锐 等:模拟集成电路二维 Stack 生成及模块合并算法 645 

degree vertices on each side of symmetric axle is 
odd, there are also two methods which can be 
applied. 

Method-3: After connecting them pair by pair, 
there will be one odd degree vertex leaved 
unconnected on each side of the symmetric axle, 
which is symmetric to each other (Fig.2(a)). The 
following theorem guarantees that there must exist 
a self symmetric vertex. Therefore, we use the self 
symmetric vertex as the start vertex to construct 
symmetric Eulerian trail symmetrically and synchronously on both sides of the symmetrical axle. The trail has even 
edges. 

(b) (a) 
Fig.2 (a) One odd degree vertex leaved unconnected on 
each side; (b) Edges crossing symmetry axis; (c) 
Connecting the last odd degree vertex with its symmetric 
vertex by a self symmetric dummy edge. 

(c) 

Theorem 1. Given a symmetric graph G=(V,E), if there is no self symmetric edge and the number of odd 
degree vertices on each side of the symmetric axis is odd, there exists at least one self symmetric vertex. 

Proof.  Suppose for the sake of contradiction that there is one vertex that is not self symmetric, i.e. each vertex 
has a symmetric one on the other side of symmetry axis. 

Since there is neither self symmetric edge nor self symmetric vertex, we can separate the graph into two sub 
graphs by removing the edges that cross the symmetry axis (Fig.2(b)). While removing one pair of the crossing 
edges, two vertices’ degrees change their parity from odd (even) degree to even (odd) degree. Therefore, the parity 
of the odd degree vertex number on each side of symmetric axle keeps unchanged. Then, in each sub graph, the 
number of odd degree vertices is still odd, contradicting the corollary of Eulerian theorem that the number of odd 
degree vertices is even. □ 

Method-4: After connecting them pair by pair as done previously, we connect the last odd degree vertex with 
its symmetric vertex by a self symmetric dummy edge (Fig.2(c)). Let the self symmetry edge be (vn/2+1,vn/2+2) in the 
symmetric Eulerian trail, then the two vertices vn/2+1 and vn/2+2 are used as the start vertex on each side of the axle to 
construct the symmetric Eulerian trail. There are odd edges in the trail. 

The following procedure gives an explicit description of the previous processes. 
Procedure BuildSymmetricEulerianTrail 

Begin 

Find all odd degree vertices on one side of the axle; 

If the number of odd degree vertices is even 

 // symmetric Eulerian Trail-1 has even edges 

Use method-1 to construct symmetric Eulerian Trail-1; 

// symmetric Eulerian Trail-2 has odd edges 

Use method-2 to construct symmetric Eulerian Trail-2; 

Else if the number of odd degree vertices is odd 

 // symmetric Eulerian Trail-1 has even edges 

 Use method-3 to construct symmetric Eulerian Trail-1; 

 // symmetric Eulerian Trail-2 has odd edges 

Use method-4 to construct symmetric Eulerian Trail-2; 

 End; 
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2.3   2D stack generation 

We construct several common centroid stacks with different ratios for each partition. These stacks can be 
selected by simulated annealing placement algorithm. The upper and lower bounds of the stack ratios can be 
specified by the user.  

In the following procedure, one row stack is constructed first and then two row stacks and so on, until the ratio 
limits are reached. The trail (trail-1 or trail-2) that can be divided exactly by the row number is used to construct the 
stack.  

Procedure ConstructStack 

Begin 

row=1;  

length-1=edge number of trail-1; 

length-2=edge number of trail-2; 

while stack ratios do not reach the limits 

if row is even and length-1 can be divided exactly by row.  

 Construct stack as Fig.3(a) using Trail-1; 

else if row is odd 

if length-2 can be divided exactly by row 

 Construct stack as Fig.3(b) using Trail-2; 

if length-1 can be divided exactly by row 

 Construct stack as Fig.3(c) using Trail-1; 

row++;  

End.  
From the procedure and definition of 

the symmetric Eulerian trail we can see the 
centroid of the symmetric devices is at the 
center of the stack. The only possible self 
symmetric edge (vn/2+1,vn/2+2) appears at the 
center of the middle row (Fig.3(b)). 

There are still some other tricks we 
have used in our algorithms. Edges 
including dummy edges incident to the same 
two vertices are mutually interchangeable. 
We do not decide which one is chosen 
during constructing the trail. Decision is 

postponed to the stack generation. During stack generation, selection of the dummy edge or real device edge is 
decided dynamically based on its position in the stack. If the current position is the end of a stack row, a dummy one 
is preferred[22]. 

Fig.3  The dash-dotted line represents the Eulerian
trail. (a) Even row stack; (b) Odd row odd column
stack; (c) Odd row and even column stack.

(b)(a) 
(vn,vn−1) (vn−1,vn−2) 

(v2,v1) (v3,v2) 

    ),( 2212 ++ nn vv

(vn,vn−1) (vn−1,vn−2) (vn,vn−1) (vn−1,vn−2)

(vn/2+1, vn/2+2)

(v3,v2) (v2,v1) (v3,v2) (v2,v1)

(c) 

3   Block Merging Algorithms 

Block merging is to further explore the possibility of geometric share between different stacks during 
placement. It reduces not only the area but also the parasites. 

The block merging has following two main steps which occur during the packing.  
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(1) For each module all the merging candidate modules are found.  
(2) The maximum merging distance is calculated, according to which the module position is adjusted. 
In first step, because each module can only be merged to its left and bottom, only that left or below module a is 

a merging candidate for it. For module a and arbitrary module b, 
if X(a)<X(b)+Width(b) and X(b)<X(a)+Width(a), b is a’s bottom merging candidate. 
if Y(a)<Y(b)+Height(b) and Y(b)<Y(a)+Height(a), b is a’s left merging candidate. 
In second step, the maximum merging distance is the length that the module can horizontally (vertically) merge 

to the left (bottom). Each module can be represented by two rectangles (Fig.4). One is the merging area m, and the 
other is the solid areas that can not be merged. w1 and w4 are widths of the solid areas. w2 and w3 are widths of the 
merging areas. d1 is the distance between the merging areas. d2 is the distance between the solid areas. d3 and d4 are 
distances between the merging area and solid area. When module-2 is horizontally merged to left, if the two areas 
never touch, the distance between them is set to be infinite, for example, d2 in Fig.4(b) is infinite. Figure 4 shows 
the case of a horizontal merging to the left. The vertical merging is similar. 







∞+
+<
+<

+−=
Others

)()()( and
)()()( If

)()()(
221

112
212

1 mHeightmYmY
mHeightmYmY

mWidthmXmXd  







∞+
+<
+<

+−=
Others

)()()( and
)()()( If

)()()(
221

112
212

2 sHeightsYsY
sHeightsYsY

sWidthsXsXd  







∞+
+<
+<

+−=
Others

)()()( and
)()()( If

)()()(
221

112
212

3 mHeightmYsY
sHeightsYmY

mWidthsXmXd  







∞+
+<
+<

+−=
Others

)()()( and
)()()( If

)()()(
221

112
212

4 sHeightsYmY
mHeightmYsY

sWidthmXsXd  

Theorem 2. The maximum merging distance is  
 Dm=min(min(w2,w3)+d1,d2,d3,d4) (1) 

Proof.  According to Fig.5, we can justify the theorem for each situation. For Fig.4(a), the merged result is 
shown in Fig.5(a) and the maximum merging distance is w2+d1 when w2<w3, or w3+d1 when w2>w3. Figure 5(b) is 
the result of Fig.4(b) and the merging distance is w2+d1 when w2<w3, or w3+d1, when w2>w3. Figure 5(c) is the result 
of Fig.4(c) and the merging distance is d3, i.e. the blocks can only be compacted, but can not be merged. There are 
still other similar situations. They can all be enumerated and the correction of the theorem can be verified.  □ 

(c) (b)(a)

d4 

d1 

d2d4 

d3 

d2 

d4
d2 

(c) 

(b)(a) 

w2 

w3 w4

w1 

d3 

w1=w2 

d1=d3
w2 w1 

w4 w3 

d1 

Fig.4 The light rectangle in each module
represents the merging area. The dark rectangles
represent the solid areas 

Fig.5  The merged results of Fig.4 
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Our algorithms are implemented based on sequence pair. However, they are essentially independent of any 
topological representations. Thai is to say, it can be fairly easy to migrate our algorithms to any other topological 
representations. 

4   Results 

Figure 6(a) shows a multiplier circuit[23] which has been used as a benchmark in several previous 
researches[1~3,7]. The number of stacks generated is 4. All these stacks are 2-axial symmetric and common-centroid 
(Fig.6(b)). In Fig.6(c), layout with only 1D stacks is given as a comparable result, which is also generated by our 
tool. We can see the stacks are slim and long, and the satisfaction of the symmetry constraints depends on the 
placement.  

 The test cases for the block merging algorithm are based on the MCNC benchmark, and the merging areas are 
designated randomly. Figure 6 and Table 1 give the results of the test case based on ami33 and ami49. The merged 
areas have been circled in Fig.7. From Table 1, we can see the area usages have been dramatically increased while 
the time consuming is still in the acceptable scope. 

(c) The layout with only 1D stacks (a) The Mult circuit (b) Generated stacks 

Fig.6 Experiment results 

Table 1  Experimental results of test cases 

Without merging With merging Test case
Area Usage (%) Time (s) Area Usage (%) Time (s) 

Ami33 1 245 972 92.82 44.23 1 157 870 99.88 80.17 

Ami49 37 239 020 95.18 82.12 36 862 560 96.16 176.56 

 
 
 
 
 
 

5   Conclusions 

 In this paper, we propose algorithms to generate 2-axial symmetric stacks in linear time. Several stacks with 
different ratios are generated for one group of transistors. These stacks are chosen during the placement. Then, the 
algorithm for block merging is given, which can be used to merge stacks with different channel width transistors 
during placement. The algorithms have been proved to be efficient by the experimental results. 
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